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WKB solution of the Stark effect in hydrogen
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We present an analytical solution for the nonrelativistic Stark effect in hydrogen separated in
parabolic coordinates. The solution is given in terms of elliptic integrals and is obtained in a
first-order WKB approximation. In addition, by a suitable approximation, we extend the WKB
results to autoionizing states, above the threshold barrier. A short comparison of the present
results with exact numerical calculations is also presented.

The problem of a hydrogen atom placed in a uni-
form electric field has in recent years attracted a great
deal of attention due to the impressive experimental
developments of the physics of Rydberg states. As is
well known, the application of an electric field breaks
the degeneracy of the pure Coulombic problem and
broadens the energy levels. The basic problem then
consists in calculating the new positions as well as the
widths of the energy levels (more correctly, bands) in
the presence of the static field.

Literature concerning this problem exists since the
early days of quantum mechanics and can be divided
into three main categories: perturbative calcula-
tions,! WKB calculations,* ¢ and numerical ap-
proaches.”™ Our list of references is by no means
complete. Further references can be found in the
quoted articles. The perturbative energy series,
although giving good results at low field, is known to
be only asymptotically convergent,!? being, however,
Borel summable.!! Also, a useful definition of low
field is hard to give.

It is well known that the Hamiltonian correspond-
ing to the nonrelativistic Stark effect in hydrogen can
be separated in parabolic coordinates.!? The electron-
ic motion is ruled by two Schrédinger radial-like
equations (we use atomic units):
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where Fis the field, E the energy, Z, and Z,

(Z,+ Z,=1) are the separation constants, and

T = m?, where m is the magnetic quantum number of
the electron. In obtaining Eqgs. (1) and (2) the term
m?—1 was replaced by m? on account of the applica-
bility of the WKB approximation.
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Although it was long ago recognized by Lanczos*
that the WKB quantization rules following from (1)
and (2) could be analytically solved in terms of ellip-
tic integrals, no such solution was ever given. Lanc-
zos himself neglected the m? term and solved the
simplified problem. Later, Rice and Good® also stud-
ied the Stark effect in hydrogen: They expanded the
WKB quantization rule in terms of the m?—1 vari-
able and considered only first-order contributions. In
this approximation they were able to obtain results
very close to the perturbative ones. The difference
may be traced to their use of m?>—1 instead of m?
The last authors to consider the application of the
WKB approximation to the Stark Hamiltonian were
Bekenstein and Krieger.® They used the correct m?
term. By performing a similar expansion as previous-
ly used by Rice and Good, combined with a different
integration technique, they were able to correctly
reproduce the three first perturbation terms then
available. To obtain this results they needed to con-
sider higher-order terms of the WKB approximation
instead of the usual first-order ones.

In this Report we solve analytically the first-order
WKB quantization rules in terms of elliptic integrals.
These solutions are complete in the sense that they
contain all the contributions in m?, including the
ones neglected in previous works.*"¢ By a suitable
approximation we also extend the WKB calculations
to states above the classical ionization limit.

We begin by considering the motion of the electron
in the potential Vy,=—Z,/&+T/(4€) +F¢£/4. A
schematic view of this potential is given in Fig. 1(a).
The quantization rule corresponding to this potential
is
12
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where the turning points @ and b are the two non-
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FIG. 1. Potentials for the ¢ and n motions as defined in
Egs. (1) and (2): (@) V,=—2Z,/¢+ T/(4£2) +F¢/4; (b)
Vp=- Z,/m+T/(4n?) -Fn/4 The £ motion is always con-
ﬁned The m motion is more complicated: the electron may
leak through the potential barrier (when E/2 < V) or be
autoionizing (when E/2 > V).

negative roots of the equation
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4)
ordered as c <0=<b < a.
It is a straightforward but tedious task to show that
the integral in Eq. (3) is

1§=

12
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where x =[b(c +2a) +c(a—¢c)1/3, y=—(c—a)
X(a+b+c)/3 k*=(a—5b)/(a—c), and
o’=(a—b)/a. InEq. (5), K(k), E(k), and

II(a? k) are the complete elliptic integrals of the
J
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where (a,n) =T'(a +n)/T(a), T'(x) being the gamma
function, I, can be more compactly written as
[¢=a—-(a—b)1,

I€=T7r6—a2(a —BDIF(a—1"F(3,1,— 333,02k .
A similar result can be easily obtained for 7,. How-
ever, although more elegant, the numerical evalua-
tion of this last expression for /. involves a doubly
infinite sum of products of transcendental functions.
The connection of Appell’s series with elliptic in-
tegrals, as well as their classification and evaluation,
is discussed by Carlson.!* Carlson!¢ also developed
efficient and accurate algorithms to evaluate complete
as well as incomplete elliptic integrals which may be
easily implemented in programmable pocket calcula-
tors.

e-Le(a-0(e-n(e-0-0,

first, second, and third kind, respectively.!*

The quantization rule corresponding to the n
motion is slightly more complicated due to the pres-
ence of the relative maximum V) at 7, [see Fig.
1(b)]. Itis given by

L= f

=(n2+;—)7r. (6)
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For all classically allowed energies such that
E/2 < V,, the turning points obtained by solving the
cubic equation

_Z_E_.,)Z + 42,
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M

are non-negative numbers that can be ordered as
0=<ua < b < c[see Fig. 1(b)]. In this case the in-
tegral in Eq. (6) can be shown to be

1/2
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where x, y, k, and « are defined as above. The simi-
larity of Egs. (5) and (8) reflects the fact that Egs.
(1) and (2) are formally identical under the replace-
ment Z;—Z, and F——F. For T=0 we have =0
in Eq. (4) and the term involving the elliptic integral
of the third kind vanishes in Eq. (5). Similarly, a =0
in Eq. (7) implies a? — oo and II(a?,k) —0 in Eq.
(8). Therefore, for T =0, the term involving the el-
liptic integral of the third kind is absent in both Egs.

(5) and (8). We also point out that by using Appell’s
double hypergeometric series F;, namely,!
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For E/2 = V,, we replace bin Eq. (6) by mo. This
proves to be a good approximation since the ‘‘classi-
cal well”’ continues to be responsible for the ampli-
tude of the eigenfunction near the origin. In this
case the polynomial in Eq. (7) has two complex con-
jugate roots:

4
_2£n2 +._.Z_2.

a 7 ——-——(n a)l(n—b)*+atl=0.
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©

In our approximation the center of the resonances is
then obtained from

=L [ L (=)l (n= 1) +a )2

=(m+3)w. (10)
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FIG. 2. Evolution of the n;=0, n,=4, and m =0 level
for increasing field sirength. For fields larger than
Fp=21.563 x 107° a.u. the state is autoionizing [in Fig. 1(b),
E/2 > V,l. The central dashed line gives the numerical
results of Damburg and Kolosov (Ref. 8). The outermost
dashed lines show the broadening (width) of the level. The
solid line shows the present WKB results, while crosses are
the values predicted by fourth-order perturbative calcula-
tions (see text).

Although this integral can be evaluated in terms of
incomplete elliptic integrals of the three kinds, the
final expression is so complicated that numerical in-
tegration is more convenient. As before, one may
represent the integral in Eq. (10) by generalized hy-
pergeometric series. However, for Eq. (10) such
representation requires Lauricella’s function Fp,
which is nothing but an extension of F; to three vari-
ables. For more details we refer the reader, once
again, to Carlson.!’

For any given combination of quantum numbers
ny, ny, and mand field F, the system of equations
Ie=(ny+ %) w, Iy=(ny+ %)frr can be easily solved
for the eigenvalue E.

In Fig. 2 we present the field dependence of the
energy for the particular quantum state n, =0, n, =4,
and m =0 for which accurate numerical calculations
were reported by Damburg and Kolosov.? The
dashed lines are their® results: The line in the middle
gives the center of the resonance, while the other two
give the corresponding width. The dashed curves are
based on the numbers given in Table III of Ref. 8,
which were interpolated by a cubic polynomial. The
crosses represent the results obtained from the
fourth-order perturbation equation.! The solid line
shows our WKB results. The arrow indicates the
threshold field F, above which the state is autoioniz-
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FIG. 3. Same as in Fig. 2 but for the ground state
(ny=ny=m=0). Here Fy=0.16875 a.u..

ing. As is easy to see, the WKB approximation gives
reliable results even well above the top of the barrier
where the spectra lines are, in fact, broad bands.

Though we know that the ground state is not the
best place to test WKB calculations, we present in
Fig. 3 a comparison similar to the one in Fig: 2. It is
motivated by the fact that the ground state has been
extensively studied by several workers, and that
results at several different field values are available
for it. In this figure we present in more detail the
region near F,where the WKB result may be expected
to be less reliable, since the two turning points a and
bin Eq. (6) are very close to each other. The agree-
ment found well above Fj is striking. This supports
the approximation introduced in Eq. (10).

In this Report we presented analytical solutions to
the first-order WKB quantization rules for the prob-
lem of the Stark effect in hydrogen. We also extend-
ed the calculations well above the top of the »-
potential barrier by considering the electronic motion
as still trapped between the leftmost turning point
and the position of the top of the barrier. The width,
as well as contributions to the resonances coming
from high-order terms in the WKB approximation,
will be discussed elsewhere.
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