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We study the organization of stability phases in the control parameter space of a pe-
riodically driven Brusselator. Specifically, we report high-resolution stability diagrams
classifying periodic phases in terms of the number of spikes per period of their regular
oscillations. Such diagrams contain accumulations of periodic oscillations with an appar-
ently unbounded growth in the number of their spikes. In addition to the entrainment
horns, we investigate the organization of oscillations in the limit of small frequencies
and amplitudes of the drive. We find this limit to be free from chaotic oscillations and
to display an extended and regular tiling of periodic phases. The Brusselator contains
also several features discovered recently in more complex scenarios like, e.g. in lasers
and in biochemical reactions, and exhibits properties which are helpful in the generic
classification of entrainment in driven systems. Our stability diagrams reveal snippets

of how the full classification of oscillations might look like for a wide class of flows.

1. Introduction

This paper presents a systematic investigation of the global organization of os-

cillations, periodic or not, observed in several two-parameter sections of control

parameter space of a periodically driven Brusselator. Of particular interest is to

understand the unfolding of periodic oscillations and to describe what happens in

the limit of low-frequencies and low-amplitudes of the external trigonometric drive.

Our objectives are twofold: First, to revisit and to extend certain aspects

of earlier works. Thanks to more powerful computers, it is now possible to ob-

tain high-resolution phase diagrams for the oscillator. Second, to show that this

oscillator still harbors a plethora of unanticipated and interesting dynamical

∗This article will also appear in “80th Birthday of Professor Hao Bailin”, edited by Phua Kok
Khoo and Ge Molin (World Scientific, 2016).
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phenomena, particularly in the aforementioned low-frequency limit, where the sys-

tem is dominated by periodicity and free from chaotic oscillations. We find the

global organization of the complex oscillations to deviate in several aspects from

what is currently known. Our basic tools of analysis are high-resolution phase dia-

grams obtained by using massive parallel high-performance computer clusters. We

will also digress about some interesting open problems in driven oscillators. In the

next Section, we sketch briefly the origin and some basic informations about the

driven Brusselator, presenting then our results.

The existence of deterministic chaotic behaviors generated by oscillators of all

sorts is now a well-established fact which occurs in virtually all field of science

and is documented in innumerous books and surveys.1 Despite the fact that the

presence of the “randomly transitional phenomena”, discovered by Ueda2,3 in 1961,

or the “deterministic nonperiodic flows”, discovered by Lorenz in 1963, were first

explicitly reported for flows, i.e. for systems of differential equations, most of the

knowledge about chaotic behavior stems from investigations done on discrete-time

nonlinear mappings. This fact is a simple consequence of the comparatively limited

computational and graphical resources available in the early days. Furthermore, it

is much simpler and more expeditious to iterate a discrete map than to integrate

flows.

In flows, the existence of chaotic solutions has been traditionally illustrated ei-

ther by projecting attractors into specific phase-space planes for selected parameter

points, or by computing bifurcation diagrams along restricted parameter intervals.

It is not uncommon to see recent papers reporting stability diagrams still consisting

of a few simple curves delimiting the boundaries between phases characterized by

the first few periodic oscillations, not the boundaries of periodic phases for “all”

periods which lie well-beyond tame Hopf bifurcation borders, and not the bound-

aries of chaos. It is not yet standard practice to provide information concerning

the actual inner structural organization of the chaotic phases, how abundant they

are, if they contain internal subdivisions, accumulations, regularities, multistabil-

ity, etc. In this context, an important open question is the quantification of the

chaotic phases, of their boundaries and their evolution when parameters normally

kept fixed are allowed to vary. These are questions that we wish to address here

for the Brusselator. Together with the Belousov-Zhabotinsky reaction — reviewed

in this volume by Field4 — the Brusselator is among the most extensively studied

flows.

2. Chemical Oscillations and the Brusselator

2.1. Origins of the Brusselator

The origins of the oscillator known as Brusselator can be traced to a work in 1956 by

Prigogine and Balescu5 showing that undamped oscillations6–15 are supported far

from thermodynamic equilibrium in open chemical systems governed by nonlinear

kinetic laws. This line of research was subsequently elaborated with the help of
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abstract chemical models, one of them named “Brusselator” in 1973 by Tyson.16

The name refers to a model studied in Brussels,7 dealing with an autocatalytic

process of the same type discussed much earlier, starting in 1910, by Lotka.11–15

The scheme-I considered by Prigogine and Lefever is7,16

A
k1−→ X ,

B +X
k2−→ Y +D ,

2X
k3−→ 3X ,

X
k4−→ E ,

where A and B are input chemicals maintained at constant concentration, D and

E are output chemicals, and X and Y are intermediates. The rate equations for

the two intermediates are

dX

dt
= k1A− k2BX + k3YX

2 − k4X , (1)

dY

dt
= k2BX − k3YX

2 . (2)

After proper rescaling these equations can be reduced to a system without super-

fluous parameters:16

dX

dt
= A− BX +YX 2 − kX , (3)

dY

dt
= BX −YX 2 . (4)

where, for simplicity, k ≡ k4. In the equations above we dropped a diffusion term

which is not of interest here. For the standard linear stability analysis of the model

above see, e.g. Section 2.2.5 in the book of Epstein and Pojman.17

As already mentioned, the (non-autonomous) Brusselator and the (autonomous)

Belousov-Zhabotinsky reaction4 are the two examples of (mathematical) flows that

sparked almost simultaneously extensive studies of chaos in chemical reactions dur-

ing the last four decades. However, after the coming-of-age of chaos, it is now be-

coming evident that the global organization of periodic oscillations presents many

unsuspected surprises and that much still awaits to be discovered for them, partic-

ularly concerning the self-organization of oscillations in autonomous systems, free

from the interference of external enslaving. In this context, we mention that periodic

oscillations in chemistry already have an almost two-centuries long history, dating

back at least to the beginnings of the 19th century as evidenced by the many exper-

imental works collected and described in essentially forgotten books,9,10 a history

that needs to be better known.

Information about the dynamics of the Brusselator is collected in a 1977 book

by Nicolis and Prigogine.6 This book, however, is focused on the work of its au-

thors and colleagues, not an overview of the field. While summarizing admirable

things, connections with equally admirable earlier findings are not described. For
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instance, Rosen18 pointed out that “Irreversible thermodynamics, then, desires to

treat dynamical properties of open systems by preserving the language historically

developed to deal with equilibria in closed, isolated systems. This can be done, of

course, but only through the introduction of a cumbersome and ad hoc formalism

which, I believe, only serves to obscure underlying dynamical relationships. This

formalism also serves to give an illusion of novelty to the dynamical study of open

systems which actually dates back at least to Poincaré on the mathematical side,

and in the sciences has been stressed by Bertalanffy [1932] and a host of others for

forty years and more.” Rosen further adds: “. . . Historically, it was shown already

by Rashevsky [1940] that, under appropriate conditions, reaction-diffusion systems

could spontaneously generate and maintain spatially ordered states; he showed in

particular how these mechanisms could generate polarities and gradients in ini-

tially homogeneous and isotropic cells (although Rashevsky was in fact the great

pioneer in the study of reaction-diffusion systems in biology, his name is charac-

teristically not mentioned in this connection anywhere in the book). The point of

departure for the work of Prigogine and his school in self-organization was a pa-

per of Turing [1952] which again showed, albeit in a much simpler context than

Rashevsky, how spatial patterns could be established and maintained in au-

tonomous reaction-diffusion systems. The present volume provides a systematic

treatment of such systems, from the standpoint of irreversible thermodynamics.”

The work by Nicolis and Prigogine on the Brusselator6 was also reviewed by

Othmer,19 who describes merits: “. . . there follows a sixty-six page analysis of some

of the different types of bifurcations that can arise in the trimolecular reaction

known as the Brusselator. Since this reaction scheme does not model any real chem-

ical system, its main value lies in some of the behaviors of two-variable illustrating

systems of nonlinear reaction-diffusion equations as simply as possible. However,

there are equally simple models of real processes available (for instance, polynomial

models of the glycolytic reactions mentioned in Chapter 8) that would serve better

for this purpose in that some comparison between model predictions and exper-

imental observations could be made. Nonetheless, the analysis of the Brusselator

may prove useful to the neophyte in this area in that the often long and involved

computations are spelled out in detail.”

Our motivation for studying the forced Brusselator is the desire to understand

periodic and entrained oscillations. As it is known, depending on the amplitude and

frequency of the external drive, the oscillations may emerge entrained either in a

periodic, quasi-periodic, or chaotic mode. The original interest was in determining

the extent in control parameter space of the various response regimes and under-

standing the transitions between them. Essentially, this is the basic problem to be

solved for all sorts of nonlinear oscillators. It remains the outstanding problem in

the field.

Another important motivation for studying the Brusselator is the fact that

its undriven version is a limit-cycle system directly connected with much ongoing
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research linked to Hilbert’s sixteenth problem, as described in several books.20–22 Of

special interest to us is to gather snippets concerning “simple” systems with cubic

nonlinearities, the nonlinearities that we found recently to be frequently connected

with wide-ranging organization of motions in the control space in several practical

applications.23–33

2.2. Forced Brusselator: 1977 1982

Forcing was introduced in 1977 by Tomita, Kai, and Hikami.34 They considered the

equations

dX

dt
= A− (B + 1)X +YX 2 + a cos(ωt) , (5)

dY

dt
= BX −YX 2 , (6)

where a and ω are the new freely tunable parameters controlling the external drive.

In the absence of forcing, limit cycle behavior exists when16

B > A2 + 1 . (7)

Under forcing, two coexisting stable oscillations were found34 for the point

(A,B, a, ω) = (0.4, 1.2, 0.0018, 0.34). Originally, the main concern was to deter-

mine the extension of the regions of entrainment and their stability. The limits of

entrainment were estimated by using Floquet exponents and compared with results

from numerical simulations. As a whole, Tomita, Kai, and Hikami34 report find-

ing a reasonable agreement between numerical and theoretical results, remarking

however that despite the overall similarity between computed plots and theoretical

estimations, “. . . an appreciable discrepancy is noted towards the low-frequency

limit of entrainment.” This limit is discussed in detail below.

Subsequently, in a series of papers published during 1978–82, Tomita and Kai

reported several additional results.35–39 For instance, using a stroboscopic repre-

sentation — see Chapter 16 of the book by Minorsky40 — they obtained35 the

phase diagram shown in Fig. 1(a). In this diagram one sees a few resonance horns,

a doubling cascade ending in chaos, indicated by the letter χ. The hatched region

was identified as a region of quasi-periodic oscillations. All these works focused on

the dynamics of the ω × a control plane that is observed when fixing A = 0.4 and

B = 1.2.

The resonance horns for operating the Brusselator synchronously with the drive

and with twice this period were reported by Knudsen et al.41 Motivated by exper-

imental studies for relatively large amplitudes of the forcing, these authors consid-

ered the structure of the resonance horns at intermediate and high amplitudes.

2.3. Frequency-amplitude diagram revisited

In this section, we reconsider the original frequency-amplitude diagram of by Tomita

and Kai [Fig. 1(a)], presenting analogous results obtained in three distinct ways,
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Fig. 1. (Color online) Four different frequency-amplitude stability diagrams recording entrain-
ment regions for A = 0.4 and B = 1.2. (a) Original stroboscopic Tomita–Kai representation.35,39

(b) Lyapunov phase diagram, where colors indicate chaos (positive Lyapunov exponents). (c) Dis-
tribution of the period of the X oscillations. An identical plot is obtained for Y . Black marks
non-periodic oscillations. (d) Number of spikes per period of the X oscillations. Black denotes
chaos. Boxes in the last three panels delimit the parameter region in (a). Each bitmap displays
the analysis of 1200× 1200 = 1.44× 106 distinct parameters.

presented in Figs. 1(b)–1(d). This will give us opportunity to introduce the sta-

bility diagrams to be used in the remainder of the paper. Such stability diagrams

emphasize complementary aspects of the oscillations. Before discussing what the

diagrams show, we explain how they were obtained.

Figures 1(b)–1(d) are bitmaps computed by dividing the parameter window into

a mesh of N×N equally spaced parameters, usually 1200×1200 = 1.44×106 points.

Then, for each point of the mesh we computed three quantities: the Lyapunov

spectrum, the period of the oscillations (if any), and the number of spikes contained

in one period of the periodic oscillations of each component of the flow.

To this end, Eqs. (5)–(6) were integrated numerically using the standard fourth-

order Runge-Kutta algorithm with fixed time-step h = 0.005. Integrations were

always started from an arbitrarily chosen initial condition, (x, y) = (0.16, 1.16), that

was maintained fixed for all integrations. The first 4 × 105 integration steps were

disregarded as consisting the usual transient-time needed to approach the attractor.

The subsequent 80× 105 time steps were used to compute the Lyapunov spectrum,

Fig. 1(b). After computing the Lyapunov spectrum, integrations were continued for

an additional 40 × 105 time-steps, when we recorded up to 800 extrema (maxima
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and minima) of the two variables of interest together with the instant when they

occur. From this record, we determined repetitions of the maxima, obtaining for

each parameter point the period (if any), plotted in Fig. 1(c), and the number of

spikes per period. Figure 1(d) shows the spike count obtained from the variable X .

A similar plot is obtained from Y .

We refer to stability diagrams like Fig. 1(d) to isospike diagrams,42–47 i.e. dia-

grams where, for each variable of the oscillator, one may easily recognize from the

colors both the size and the shape of oscillatory phases sharing the same number

of spikes per period. A black dot is plotted when no periodicity was numerically

detected. As indicated by the colorbar in Fig. 1(d) (and in similar figures below),

a palette of 17 colors is used to represent the number of peaks (local maxima) per

period. Patterns having more than 17 peaks are plotted by periodically recycling

the 17 basic colors “modulo 17”: Multiples 17× � of 17 are plotted with the color

index corresponding to (18 − �) mod 17, namely 34 ≡ 16 for � = 2, 51 ≡ 15 for

� = 3, 68 ≡ 14 for � = 4, etc.

The computation of these diagrams is numerically a quite demanding task that

was performed using specially in-house developed FORTRAN software to gener-

ate each figure directly as Postscript bitmap output. To obtain the bitmaps we

profited from the decisive help of up to 1536 processors of a SGI Altix cluster hav-

ing a theoretical peak performance of 16 Tflops. While it is possible to observe

period-doubling routes in the diagrams, most of the times what happens is just

the addition of a new peak to the waveform (without a corresponding doubling the

period). Note that the period is a quantity that evolves continuously when param-

eters are changed, while the number of peaks is “quantized”, namely a quantity

that changes in discrete steps. The mechanism responsible for peak addition here

is similar to the one observed in lasers and in other systems.29–31 Eventually, after

adding peaks one may reach a situation where the period roughly doubles a nu-

merical value observed previously. But such coincidence occurs for a very specific

parameter value, not for parameter intervals. The period may change not very much

with parameters. Nevertheless, it is constantly changing and such changes are easy

to detect numerically. The computation of the stability diagrams reported here is

a standard calculation that we performed as described in detail previously, e.g., in

Ref. 26 where efficient methods to deal both with numerical and experimental data

are given. See also Refs. 23, 27, 28 and 33.

Comparing the three stability bitmaps in Fig. 1 one sees that the information

conveyed by the Lyapunov diagram, Fig. 1(b), is quite limited: it merely reflects

the dichotomic division of the control space into two regions, namely chaos and pe-

riodicity. The period diagram of Fig. 1(c) shows several additional boundaries, seen

in Fig. 1(a) but which are not evident from the Lyapunov diagram. Although con-

taining more structure, the continuous variation of the period scale does not inform

what exactly is causing these boundaries, something that requires further investi-

gation to be determined. In the window covered in Fig. 1(c), the maximum value of

the period extends up to 3000, but for relatively limited subregions. Therefore, we
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imposed an much smaller upper threshold of 100 for the period in order to avoid

obtaining a solid black diagram. Next, comes the isoperiodic stability diagram in

Fig. 1(d). It provides the same dichotomic separation between chaos and periodicity

as the previous diagrams. However, in sharp contrast with them, Fig. 1(d) reveals

a number of facts about the oscillations which are not discernible in the other di-

agrams. First, the several colors correspond here to oscillations having different

number of spikes per period. Second, Fig. 1(d) shows (quantifies) the extension

(volume) of the different multi-peaked phases of oscillation. Third, it allows one

to discern the shape of the phase boundaries. Forth, it allows one to immediately

recognize the ordering of neighboring phases. Fifth, it is easy to recognize the first

few phases where oscillations undergo doubling of their number of spikes. Other

phase complexities are also exposed. We reiterate, what is effectively doubling is

the number of spikes, not the period, a quantity which varies continuously with

parameters as may be recognized from Fig. 1(d).

In the remainder of the paper we will use isoperiodic diagrams because they

convey much more information. Incidentally, recall that in his famous 1963 paper,

Lorenz also used spikes of a chaotic oscillation to extract a return map with a cusp.

Before proceeding, note that small localized differences among the high resolution

panels can be detected. Such difference and certain discontinuities reflect regions of

multistability, namely the presence of more than one attractor for a given parameter

point. We made no attempt to tune initial conditions or parameters to avoid changes

in basin of attraction. On the contrary, we find that such changes to be useful to

indicate where multistability is more easily detectable.

Figure 1 contains a salient feature: a sort of “eye” of chaos, emerging as the

accumulation limit of a doubling cascade. A natural question is to inquire about

the extension of this eye of chaos around the Tomita–Kai parameter point (A,B) =

(0.4, 1.2) and Fig. 2 provides an answer. The upper row shows stability diagrams

obtained by varying A, while the bottom row illustrates similar plots obtained

by varying B. From them one sees that the eye is less sensitive to A than to B.

From the top row one recognizes a strong overlap arising from an entrained phase

born near ω � 0.95 when A = 0.37, a phase that moves to higher frequencies as A

increases. The whole structure slides to the right. In contrast, from diagrams on the

bottom row it seems that B = 1.2 is very close to a transition threshold Bt: below

Bt chaos is absent inside the window considered, while above it chaos is abundant.

Furthermore, one also recognizes that the chaotic eye is quite localized along the

B axis of the control space, in the sense that, at least in the interval considered,

it exists just for a narrow B window. A curious feature on the bottom row is that,

below the threshold Bt, one-peak oscillations subsist over wide frequency ranges

independently of the amplitude of the drive, as long as the amplitude remains

relatively small.

From Fig. 2 it is possible to recognize that, as the forcing amplitude a grows,

there is an accumulation of many-peaked oscillations when ω → 0. This is indeed

the case, a situation discussed in detail below.
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Fig. 2. (Color online) Frequency-amplitude diagrams: How dip is the hole with chaos around the
point (A,B) = (0.4, 1.2)? Stability diagrams illustrating entrainment and the distribution of spikes
for slices of the control space. Top row: dependence on A for B = 1.2. Bottom row: dependence
on B for A = 0.4. The color scale is the same for all panels.

2.4. Forced Brusselator: 1982 1989

The driven Brusselator was also studied in a series of papers published in 1982–

1989 by Hao, Zhang, and a coworker.48–52 Their papers reported detailed phase

diagrams obtained through a careful symbolic dynamics analysis. These works are

reviewed at length in dedicated chapters in books.53–55 Apart from supplementing

information concerning the frequency-amplitude space reviewed above, Hao and

Zhang50 considered also two new parameter sections of the control space, namely

the ω × A and ω × B planes. In a different spirit, Hao52 reported phase diagrams

drawn in an auxiliary β× γ space, defined by the eigenvalues of λ± = (γ± iβ)ω) of

the linearized problem. In this Section we reconsider briefly some aspects of these

works, complementing them with details which can now be comfortably obtained

thanks to modern computer clusters. We will only scratch the surface of their work,

focusing on topics related to our interest. What follows is by no means a review of

their extensive work.55

In 1982, Hao and Zhang48 remarked that “sufficient high resolution” is a key

to understanding the dynamics of oscillators, a perennial concern that remains

valid today: “Direct period-doubling bifurcation sequences and inverse sequences of

chaotic bands have been observed in a number of iterated maps. Many properties

related to these bifurcations are shown or believed to be universal. There have been

indications that nonlinear systems described by differential equations share such

properties as well. To check this by numerical calculation we encounter the necessity

of identifying the periodic and chaotic bands with sufficient high resolution. This is
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(d) Peaks per period of Y

Fig. 3. (Color online) The chaotic “eye” represented in four distinct ways. (a) Stroboscopic dia-
gram49 after Hao and Zhang.50 (b) Lyapunov stability diagram. (c) Stability diagram displaying
the number of spikes in X. (d) Stability diagram displaying the number of spikes in Y . The two
magenta lines correspond to ω = 0.8 and a = 0.05, described in details by Hao and Zhang in their
Tables I and II. The black and white segments along the vertical line indicate two of the intervals
marked on the vertical axis in Fig. 3 of their paper. Here, A = 0.40, B = 1.2.

a much more difficult task compared with the case of iterated maps, i.e., difference

equations.”

Following Hao and Zhang,50 Fig. 3 considers details of the aforementioned “eye

of chaos” (Fig. 1), observed for (A,ω) = (0.4, 1.2), where a doubling cascade

seems to accumulating towards a specific point in the frequency-amplitude dia-

gram. Figure 3(a) mimics the original stroboscopic diagram49 of Hao and Zhang.50

Figure 3(b) shows the corresponding Lyapunov stability diagram for the same pa-

rameter region. This panel contains two lines, a vertical one at ω = 0.8 and the

horizontal at a = 0.05. Phase-space dynamics along a = 0.05 was described by

Tomita and Kay.37 Their Fig. 2(c) shows both direct and inverse cascades. The

reason for this inversion is the presence of innumerous circular rings embedded in

the chaotic phase as visible in Figs. 3(a) and 3(b). Hao and Zhang50 investigated the

dynamics along a = 0.05 in considerable detail, reporting tables giving the unfold-

ing of the several direct and inverse bifurcations along this line as well as estimates

of the convergence rate of the windows (see also their preliminary report48).

Tomita and Kay37 and Hao and Zhang50 were mainly concerned with the struc-

ture of the chaotic eye, more specifically, with describing periodic islands inter-

spersed in chaos. Complementing their findings, Figs. 3(c) and 3(d) provide further
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details of the inner structure of the periodic phases. In these figures, colors re-

flect the number of spikes per period of X and Y respectively. As it is plain from

the figures, the dichotomic separation into chaos and periodicity is the same in

all diagrams. However, Figs. 3(c) and 3(d) allow one to additionally see that the

subdivisions induced by the number of spikes depend strongly on the variable used

to count them. As for Fig. 1, each isospike diagram on the bottom row of Fig. 3

displays a more informative classification than the Lyapunov diagram.

So far, all stability diagrams considered were obtained for (A,B) = (0.4, 1.2).

But Hao and Zhang50 were also intrigued by what happens when one moves away

from the parabola in Eq. (7), delimiting stationary states. They investigated two

additional control windows, namely a window in the ω × A plane for (B, a) =

(1.2, 0.05), and a window in the ω × B plane for (A, a) = (0.4, 0.05). They found

these windows “look more complicated” than the frequency-amplitude window.

Figure 4 depicts what one finds on the ω × A plane. Figures 4(a) and 4(d)

show relatively extended portions of this control plane, recorded by counting spikes

0.0 1.5ω
0.0

0.5

A

(a) Spikes of X (b) After Hao, Wang & Zhang51

0.4 1.3ω
0.25

0.42

A

(c) Lyapunov exponents

0.0 1.5ω
0.0

0.5

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.0 1.5ω
0.0

0.5

A

(d) Spikes of Y

0.4 1.3ω
0.25

0.42

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.4 1.3ω
0.25

0.42

A

(e) Spikes of X

0.4 1.3ω
0.25

0.42

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.4 1.3ω
0.25

0.42

A

(f) Spikes of Y

Fig. 4. (Color online) Sections of the ω × A control plane showing the location and details of
a situation considered in panel (b), redrawn after Hao, Wang & Zhang.51 The slanted lines in
(e) and (f) are discussed in connection with the point listed in Table 1. Here a = 0.05, B = 1.2.
Note the greater spike diversity of X. Each bitmap displays the analysis of 1200×1200 parameter
points.
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of X and Y , respectively. They contain a pair of boxes indicating the windows

considered by Hao and Zhang. The content of the smaller box is sketched in Fig. 9

of the paper.50 A more detailed view of the larger box, obtained from a stroboscopic

map, was given in 1983 as Fig. 1 of Hao, Wang, and Zhang51 and as Fig. 1 of Hao’s

review.56 This window is reproduced here in Fig. 4(b). For this same window,

we present three additional stability diagrams: the standard Lyapunov diagram

[Fig. 4(c)], and a pair of diagrams, Figures 4(e) and 4(f), obtained by counting

spikes of X and Y , respectively. These diagrams illustrate that the basic features

are well represented in Fig. 4(b). It is also possible to recognize a quite complicated

alternation of colors visible in the myriad of smaller phases in Figs. 4(e) and 4(f)

as well as in certain regions in Figs. 4(a) and 4(d). These complex organizations of

stability phases were recently observed and described in rather different contexts,

namely in series of nested arithmetic progressions of oscillatory phases arising in

a simple enzyme reaction model introduced by Olsen,24 and as nonchaos-mediated

mixed-mode oscillations in a state-of-the-art model of the same enzyme reaction.25

In Figs. 4(e) and 4(f) one sees the slanted white line A = 0.46− 0.2ω. This is a

line considered by Hao and Zhang,50 in Table 5.20, page 300, of Hao,53 and in Table

6.4, page 327, by Hao and Zheng.54 Along this line, they considered specific points

(ω,A) reproduced here in Table 1. For these values of ω are characterized by specific

symbolic codings. The table contain ω values corresponding to the symbolic codings

of all periods up to 7. Since there is no connection between symbolic sequences

and stability, the ω intervals defined in Table 1 do not correspond to the stability

intervals observed along the slanted lines. For each ω, Table 1 collects some orbital

indicators: the number of spikes per period of X and Y , and the value of the period

T . From this table one sees that it is possible to recognize that the several indicators

listed do not agree uniformly along the slanted line.

Figure 5 depicts stability phases of oscillations found for an extended range

of the ω × B control plane, as recorded by counting spikes of X . The dominant

blue color of the series of parallel stripes represent 1-peaked oscillations while black

denotes chaos. Figure 5(a) shows the region where the dynamics changes more. The

box in it is shown enlarged in Fig. 5(b), which contains four additional boxes, shown

magnified on the bottom row. When moving towards smaller values of ω, the blue

stripes are separated more and more by domains where very complex alternations

of periodic phases can be seen [Figs. 5(c)–5(f)]. On the scale of Fig. 5(a) such

regions seem to display some mild similarity but, in fact, every stripe has its own

characteristic inner organization, as illustrated on the bottom row.

Figures 5(c)–5(f) display quite different organization of the oscillatory phases.

In fact, it is quite difficult to describe them by other means than representing

them graphically. Here, colors are very helpful to distinguish their exquisite orga-

nization. Recall that these figures represent cuts obtained for the specific values of

A and a mentioned in the figure caption. Changes of these values implies chang-

ing the distribution of the phases plotted. Therefore, a proper understanding and

description of these phases would require investigating how they evolve when the
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Table 1. Comparison of distinct characterizations of the oscillations for
points along the line A = 0.46− 0.2ω [white line in Fig. 4(e)], studied with
symbolic dynamics and collected in Table 5.20 of Ref. 53 (see also Hao and
Zheng54). “Hao’s p” refers to the period listed in Table 5.20. The distinct
indicators do not agree uniformly for all values of ω.

# Hao’s p Pic-x Pic-y ω T ωT/(2π)

1 2 2 1 0.54400 23.09950 1.9999614
2 4 2 1 0.55500 22.64250 2.0000345

4 4 3 0.57770 43.50500 4.0000155
3 6 6 4 0.58249 64.72100 6.0000356

6 − − 0.58251 chaos chaos
4 5 5 3 0.58450 53.74850 5.0000114

5 5 3 0.58480 53.72050 4.9999716
5 3 3 2 0.59470 31.69550 2.9999615

3 3 1 0.65400 28.82200 3.0000051
6 6 3 1 0.65450 28.80000 3.0000070

6 5 3 0.70250 53.66450 6.0000317
7 5 5 2 0.70680 44.44800 4.9999872

5 5 3 0.71150 44.15450 5.0000000
8 6 6 3 0.71800 52.50600 6.0000312

6 6 3 0.71850 52.46900 5.9999785
9 4 4 2 0.73250 34.31100 4.0000105

4 3 1 0.79200 31.73300 3.9999673
10 7 6 2 0.80350 54.73850 7.0000139

7 6 3 0.80560 54.59550 6.9999742
11 − − − forbidden forbidden forbidden
12 7 6 4 0.81940 53.67500 6.9998405
13 5 − − 0.82590 chaos chaos

5 4 1 0.86750 36.21500 5.0000933
14 6 5 2 0.90150 41.81750 5.9998988

6 5 1 0.92300 40.84250 5.9997638
15 7 6 2 0.95900 45.86500 7.0003562

7 6 2 0.97400 45.15750 7.0001763

additional parameters are tuned. This is something that demands a huge investment

of computer time and will not be attempted here.

An interesting open question is to try to understand what sort of mechanisms

generate 1-spike stripes over relatively wide regions and then, with a certain regu-

larity, produce very complex alternation of stable oscillations with spikes that grow

in number with apparently no upper bound. This growth may be easily corrob-

orated by additional enlargements of smaller and smaller parameter regions (not

shown here). Next, if instead of X one uses Y to count the spikes, then the same

overall dichotomic distribution of periodicity and chaos is obtained but the alterna-

tion of the phases is by far less complex than in Fig. 5, similarly to what happens

between Figs. 4(a) and 4(d). Why this is so is not understood yet. Another interest-

ing question related to these diagrams is to understand what is behind the several

parameter accumulations discernible in them, and why they occur in very specific

regions of the diagrams.
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Fig. 5. (Color online) Successive enlargements illustrating the complex distribution of oscillatory
phases recorded from the spikes of X on the ω × B plane. The box seen in (e) marks a region
considered earlier by Hao and Zhang.50 Here A = 0.40, a = 0.05. Each bitmap displays the
analysis of 1200 × 1200 parameter points.

3. Low-Frequency Limit: Mosaic Tilings

Careful examination of the three distinct parameter sections discussed so far reveals

several regions where the number of spikes varies considerably. One such region is

the ω → 0 limit in the frequency-amplitude diagrams in Fig. 1. As far as we know,

these complex accumulations of oscillations were not yet considered in the literature.

The purpose of this Section is to describe them qualitatively in some detail.

Figure 6 illustrates the complex alternation of stability phases typically found

in the ω → 0 limit. In this limit, the stability diagram turns into regular mosaics

of phases which organize themselves differently along certain specific regions. For

instance the regular organization seen on the left of the upper part of Fig. 6 seems

to be interrupted on the boundary formed by domains like the ones labelled B,E, g3
and the domains labelled A,D, g2. These latter domains preserve the systematics

seen on the domains above them but the relative size of the domains changes sig-

nificantly when crossing the aforementioned boundary. Similarly, there is another

discontinuity when passing from G, J,M etc to H, I, L etc. Additional discontinu-

ities exist but are less evident. They would require enlargements to be seen more

easily.

Conspicuous in Fig. 6 is the absence of chaotic phases for low frequencies. In

this region, the number of spikes per period grows steadily by one when moving

towards the left of the diagram. The rapid alternation of the colors indicates that
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Fig. 6. (Color online) Mosaic tiling observed in the limit of low-frequency and small amplitudes,
recorded from the spikes of X. Here (A,B) = (0.4, 1.2). In the absence of the external drive, the
angular frequency the oscillator is ω0 = 0.375.

Table 2. Characteristics of the oscillations for the points marked in Fig. 6, when
(A,B) = (0.4, 1.2). Coordinates (ω, a), the period T of the oscillations, and the number of peaks
contained in one period of X. In the absence of the drive, ω0 = 0.375.

ω/ω0 a Period # peaks ω/ω0 a Period # peaks

A 0.051 0.77 328.535 3 J 0.0539 0.355 310.855 8
B 0.048 0.83 349.065 4 K 0.0533 0.338 314.355 9
C 0.045 0.88 372.34 5 L 0.0527 0.316 317.935 10
D 0.034 0.7 492.8 4 M 0.0479 0.332 349.795 9
E 0.032 0.75 523.6 5 N 0.04745 0.315 353.11 10
F 0.031 0.78 540.49 6 O 0.047 0.3 356.495 11
G 0.0615 0.382 272.44 7 P 0.04320 0.312 387.85 10
H 0.06095 0.368 274.9 8 Q 0.04275 0.296 391.935 11
I 0.0603 0.353 277.86 9 R 0.0423 0.28 396.105 12
g0 0.035 0.51 478.72 7 g2 0.018 0.62 930.845 7
g1 0.027 0.55 620.565 7 g3 0.0172 0.66 974.14 8

g4 0.0163 0.69 1027.925 9

the number of spikes per period grows very fast towards ω = 0. Rather than chaos,

the black region near ω = 0 seems to reflect difficulties of the algorithm to separate

the series of very small amplitude peaks which proliferate more and more in the

solutions. By tuning the integrator and using longer transients we were able to

complement the diagram more and more near ω = 0, giving us the impression that,

in fact, there is no upper bound on the number of peaks, just on the amount of

time and effort that one is willing to spend in order to complete the diagram in

this region. As may be recognized from the figure, the double limit ω, a → 0 is even
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trickier and deserves further study. Be it as it may, in the present paper we just

wish to address what is causing the large mosaics easily discernible in the figure,

not their possible existence down to ω → 0.

To investigate more closely the phases with distinct number of spikes underlying

the tiling in Fig. 6, we computed the temporal evolution for a number of represen-

tative points, indicated by the several labels in the figure. Their coordinates, period

and number of peaks are listed in Table 2.

Figure 7 displays the temporal evolution for the triplet of points labelled A,B,C

and D,E, F in Fig. 6. The number of spikes increases in two distinct parts of the

oscillatory signal: inside the boxes in each panel, and around the minimum value of

the oscillations. Along the vertical columns in Fig. 7, the number of spikes remains

constant inside the boxes, namely they are constant for the triplets A,B,C and

D,E, F , etc. In contrast, the total number of spikes increases downwards by one as

the amplitude a increases. This allow one to grasp what sort of mechanism is acting

to produce the tiling seen on the leftmost upper corner of Fig. 7: a proliferation of

spikes near the minimum.

Next, Fig. 8 presents a detailed view of the spikes unfolding near the cusp-like

patterns marked in Fig. 6 by triplets of points labelled G,H, I, J,K,L, M,N,O,

etc. In every triplet, the middle point, namely, points H,K,N,Q where chosen very

near to the cuspidal point. In Fig. 8, red dots denote local maxima of X , z� refer

to successive magnifications of the box seen on the bottom of each panel, and the

arrows point to the birth of a new spike. From the sequence z� of magnifications

we may identify a sort of “spike gun” inside box z4 which is shooting spikes to left,

one by one.

What happens when moving across one of the many elongated phases stretching

roughly diagonally in Fig. 6? An answer is given in Fig. 9, where we represent the

temporal evolution of X for the six points G, g0, g1, . . . , g4 marked in Fig. 6. From

this figure it is clear from the outset that the four points G, g0, g1, g2 must all have

seven spikes, with additional spikes emerging for g3 and g4. From Fig. 9 one sees

that two major changes happen when moving from G to g2: (i) The amplitude of the

oscillations is greatly reduced when the amplitude a of the external drive increases,

and (ii) the period of the oscillations increases considerably with a. The spike-

adding mechanism acting when moving from phases g2 → g3 and from g3 → g4 is

similar to the one acting when moving from D → E → F and from A → B → C,

already described in Fig. 7. Along the upper phase boundaries of Fig. 6, new spikes

get added one by one near the minima of the oscillatory signal. From g2 to g3 a

negative spike of large intensity appears. It is the first of a train of similar spikes

but with smaller and smaller intensity as a increases and ω → 0.

Figures 7–9 allow one to understand the nature of the spike-adding mechanism

at work to form the regular tiling observed at low frequencies. In this interesting

region, the relatively slowly varying oscillations acquire localized trains of spikes

that get more and more low-amplitude spikes as the amplitude a of the drive grows,

and as its frequency tends to zero. As mentioned before, while it is numerically
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Fig. 7. New spikes emerge one by one, near the minimum of X, when the amplitude a of the
drive increases vertically along the triplets of points a, b, c and d, e, f , marked in Fig. 6. The insets
show details of the number of peaks in the upper part of the oscillations. The number of spikes in
the inset remains constant along vertical sequences.

demanding to repeatedly tune the integrator and initial conditions to detect large

number of spikes with tiny differences in their amplitudes, the general trend seems

clear and unlikely to bring additional surprises in this range. Such localized trains of

pulses with an unbounded number of spikes induce nice tilings in phase diagrams

like the one in Fig. 6. Before moving on, we mention that the stability diagram

corresponding to Fig. 6 obtained by counting spikes of Y (instead of X , as in

this figure) has a rather similar structure but with an additional change of phases

occurring along the line a = 0.425, and a few other details whose discussion we now

postpone.
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Fig. 9. (Color online) Evolution of the waveform of x along the 7 spikes’ strip and the genesis of
new spikes which form a mosaic-like pattern. The red dots marked maxima of x and the arrows
locate new emerging peaks. Coordinates of the points G, g0, g1, . . . , g4 and the period of x are
given in Table 2.

4. Changes of Plane B × A Under Forcing

As mentioned above, an important motivation to consider modifications of the B×A

control plane of the Brusselator is its connection with Hilbert’s sixteenth problem

and our interest in studying oscillators with cubic nonlinearities. In the absence

of drive, the Brusselator is a two-dimensional system and the Poincaré-Bendixson

theorem precludes the onset of chaos. Thus, only limit cycles may be present and

the question is counting their quantity as a function of A and B and determining the

size of the individual basins of attractions. In this context, an interesting question is

to find out the structural modifications of the oscillatory phases and their number

when in presence of an external drive of small amplitude. As far as we known, the

control plane B ×A was not yet considered for the driven oscillator.

Figure 10 illustrate that intricate alternation of phases typically observed on the

B×A plane when the amplitude a of the external drive grows for a given frequency,

here ω ≡ 1. In sharp contrast with the very small number of spikes detected in the
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Fig. 10. (Color online) Impact of the growing amplitude a of the external drive on the B × A
plane when ω = 1. Top row: successive magnifications of the regions inside the box. Bottom
row: overall compression induced by larger amplitudes a. Each bitmap displays the analysis of
1200 × 1200 parameter points.

limit cycles typically present in polynomial systems,20–22 even the relatively small

amplitude a = 0.05 is enough to induce a large number of stable oscillations with

an apparently unbounded number of spikes. This is illustrated by the three stability

diagrams on the top row of Fig. 10. As observed previously for the other control

parameter planes, the plane B × A also displays specific “directions”, or paths,

where large number of spikes accumulate. It also contains large phases of chaos

“bridges” similar to the ones reported recently in a model of an enzyme reaction.24

The three panels on the bottom row of Fig. 10 show that the overall structure

of the stability diagrams are not strongly affected when a further increases. The

major change is a sort of “pinching effect” along the vertical coordinate, with the

phase ordering remaining isomorphic but with chaotic phases significantly reduced

as a grows. Of course, this pinching has noting to do with the homonymous effect

in plasma physics. The B ×A plane will be considered with more detail elsewhere.

5. Reminiscences

This paper is dedicated to Prof. Hao Bailin, on the occasion of his 80th birthday. In

this special Section we collect some personal reminiscences related with his many

publications in nonlinear dynamics.
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While collecting information for this paper the author had the privilege of ex-

changing emails with Dr. Tohru Kai and Prof. Hao Bailin, concerning early work on

the driven Brusselator. One email from Prof. Hao Bailin is so rich on informations

about his original work on the Brusselator, about his motivations for studying it,

and delightfully intertwined with personal remarks that, with the kind permission

of its author, it is reproduced here in toto.

5.1. Unsuspected impact of Hao Bailin writings

Our motivation for selecting the driven Brusselator is that it was also the object

of a contribution by Prof. Hao Bailin, presented in 1987 in a volume dedicated to

Prof. Kazuhisa Tomita, on the occasion of his retirement from the Kyoto Univer-

sity.56 So, it is with great pleasure that I outlined some findings of recent and current

studies of the forced Brusselator, offered as a contribution in the Festschrift hon-

oring Professor Hao Bailin. His publications in nonlinear dynamics include several

papers on the problem of describing and interpreting the complexities associated

with the general field of deterministic chaos. The many contributions of Hao Bailin

and his wife Zhang Shuyu also include influential books and monographs on chaotic

dynamics where much information and valuable references to the literature can be

found.

Such books were extremely useful in the early days of my studies because, living

and working very far away from big scientific centers, access to information was

very limited. Nowadays, the younger generation can hardly imagine how difficult

it was in the pre-historic days, i.e. before the internet, to obtain and to exchange

information. Back then, information was essentially limited to printed journals and

books. Thus, to create and maintain local libraries was very critical. Every year,

our library needed to apply for funds to pay journal subscriptions, ask for all pro-

forma invoices, go after requests lost in the “snail-mail”, send out applications

and justifications to the central government and await for the inescapable cuts

and the approval. After all that, because of strict restrictions for spending hard

currencies, the library needed to start lengthy burocratic procedures to pay several

different publishers abroad, each one requiring separate banking transactions and

paper work. So, it was not uncommon to receive only by the end of every year a few

precious boxes containing all together the journal issues of the last 11–12 months.

And then to restart the whole procedure anew!

One of the best physics libraries in South America is located in Porto Alegre,

Brazil. It owes much to the diligent work of a dedicated librarian, Zuleika Berto,

who during several decades, even after her retirement, zealously collected materi-

als, organized them, and trained a host of other librarians to help maintain the

collection. In this library, it is still possible to check today journal covers for rub-

ber stamps marking their clustered abrupt arrivals, not scattered along the year as

one would normally expect. That such dates are well preserved today is of course

a “benefit” of never having funds to bind the journals (thereby removing their
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covers). Curiously, when photocopies were still popular, we could obtain them much

easier and in much readable form from our not binded journals than abroad, from

large and heavy bounded volumes. All this gives a glimpse into the importance of

being then able to ask colleagues traveling abroad to smuggle into the country the

books and monographs of Hao Bailin and Zhang Shuyu: apart from their valuable

scientific contents, the references that they diligently gathered allowed us to write

the then common post-cards to colleagues abroad, hoping to obtain in return, by

quite slow mail, copies of their new and old publications. Dear Prof. Hao Bailin,

thank you very much for this non-orthodox help provided by your works and for

all the inspiration from your many contributions!!

5.2. Reminiscences of Hao Bailin

I was born on 26 June 1934 in Beijing. A few months before my birth my father

Kingsheng Hao went to Berlin to do his PhD in botany and forestry (eventually he

got two degrees and used to call himself Dr. Hao in the German way). Therefore, I

was given the name Bailin. Bailin means cypress forestry and it is also the Chinese

transcription of Berlin, the capital of Germany.

Shuyu Zhang was born a few months earlier than me in a town in province

Jiangsu, on the northern bank of the mouth of the great Yangtze River. We did not

know each other until the second half of 1953. In 1953 we graduated from different

high schools in Beijing and took part in the nation-wide entrance examination for

higher education. Apparently, we both got good scores and were accepted not by

any university but by a preparatory class at Beijing Institute of Russian Language

to be sent by the government to USSR. Although I was dreaming to become a

physicist and Zhang a chemist, the authorities did not care about our personal

wish.

In the fall of 1954, together with 14 fellow students, we were sent to Kharkov

Institute of Engineering Economics in the now Ukranian city Kharkov. I was as-

signed a major “Organization and Economics of Coal Mines”, and Zhang a similar

major for metallurgical industry. In September 1956 I managed to transfer to the

Department of Physics and Mathematics of Kharkov State University. (Well, I skip

the lengthy and painful story of how this was done.) I spent 3 years to complete

the 5-year program of physics. In 1959 with Shuyu we got back to Beijing in the

same trans-Sibirian train. We got married soon after.

I was sent to USSR again in the fall of 1961 to do graduate study. Being already

a physicist I had a little more freedom. I registered at Moscow State University and

started working with Lev Davidovich Landau at the Institute of Physical Problems,

USSR Academy of Sciences. Perhaps you have heard about the Landau Barrier (a

set of 10 examinations). I passed it in 10 months, but, unfortunately, Landau got

injured in a car accident in January 1962 just after I successfully took the first math

exam with him. Landau never recovered and died in 1968. I continued to work with

Alex Alexievich Abrikosov, the 2003 laureate of Nobel Prize in physics. I did not
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finish the graduate study as the relation between the two countries went down and

I returned to China the summer of 1963. I worked in the Institute of Physics, CAS,

from 1959 to 1978. I took part in the establishment of the Institute of Theoretical

Physics, CAS, in 1978 and worked there from 1978 to 2005. I worked in nonlinear

dynamics from 1980 to 1998, and in theoretical life sciences from 1997 to the present

time. In 2005 I moved to Fudan University in Shanghai and established a T-Life

Research Center there (T-Life means Theoretical Life Science).

My wife Shuyu worked in the Planning Department of the Ministry of Metal-

lurgy since 1959. Her department was disbanded during the “Cultural Revolution”

(1966–1976) and she was sent to countryside to be re-educated by the farmers. In

1972, upon return to Beijing, she was assigned a job in another technical depart-

ment. At my suggestion she started working in computer programming on China-

made transistor-based computers. For a few years she worked on LISP language

and algebraic manipulation software. She retired in 1993 as a Senior Software en-

gineer at the Institute of Physics, CAS. That was why and how she became my

collaborator.

Details about Hao-Zhang papers : Before answering your questions one by one, I

think the following recollection may help to clarify some of the points you raised.

In 1978, being a member of a delegation of CAS to Japan, I had a chance to discuss

with Prof. Tomita in his office at Kyoto University. He showed some results on

chaotic orbits in the periodically forced Brusselator. At that time I had almost no

idea about chaos and soon forgot it. In 1981 I was invited by Ilya Prigogine to the

Free University of Brussels for a half-year visit. Prof. Hermann Haken, whom I met

in 1977 during a visit to Stuttgart, took the chance to invite me to attend one of

his early synergetics symposiums held at Schloss Elmau. The theme of the meeting

was “Chaos and Order in Nature”. Together with Shuyu we spent a week on the

snow-covered slope of German Alps. Most participants talked about chaos, but I

reported on order, namely, a closed-form approximation for the three-dimensional

Ising model (it was published in the symposium volume edited by Haken, Springer-

Verlag).

On our way back to Brussels we discussed the news heard at Schloss Elmau and

decided to look at chaos in differential equations. A simple question was whether

there exist the same Feigenbaum constants in period-doublings in ODEs. At this

time I recollected what Tomita told me and suggested Shuyu to look at the forced

Brusselator. I already know that there is no chaos in autonomous ODEs of two

variables such as the simplified tri-molecule model for the BZ reaction, called

Brusselator by Tyson. Anyway, since we were visiting Brussels it was reasonable to

pick up an ODE related to Brussels.

At that time the Computing Center of the Free University of Brussels had just

updated their mainframe to CDC Cyber2000. Shuyu soon realized that most of the

users had not got accustomed to the new computing power yet. The system often

ran idle during nights and weekends, so she started submitting a great number

of jobs, while I was working on other problems. She even got protest from other
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colleagues that the user queue was some times filled with her jobs only. Then she

studied the JCL (Job Control Language) of the Cyber computer and invented a way

to chain-up her jobs so only no more 4 jobs were visible in the queue at any time.

I was occupied by my own non-chaotic problems until one day Shuyu showed me

the periodic windows she discovered along a straight line in the parameter space.

I should admit that it was Shuyu who forced me eventually to get into symbolic

dynamics. The SSS (Subharmonic Stroboscopic Sampling) method, the slowing

down exponent near bifurcation points, etc., were all understood during this time.

6. Conclusions and Outlook

In this paper, we discussed the behavior of the Brusselator when driven by a pe-

riodic trigonometric force. This system was considered almost four decades ago,

with the basic aim of understanding entrainment and the onset of chaos. Here, we

consider a complementary situation, concerning the global organization of stability

phases arising from periodic motions of arbitrarily high periods. Chaos is of col-

lateral importance. After the coming-of-age of chaos, of great interest for us is to

understand the partitioning and tiling of the control parameter space into series of

stability phases and their accumulations. This description must include the classi-

fication of motions with all observable periodicities, the classification and study of

the phases, and the investigation of their evolution as a function of as many control

parameters as possible.

In recent year, the investigation of autonomous flows has revealed several unan-

ticipated and wide-ranging organizations stability phases in the control parameter

space of real-world practical applications.23–33 Such findings uncover many enticing

problems related to classical dissipative oscillators. For instance, nowadays there is

an almost universal belief that Farey trees and entrainment would be inseparable

partners in flows. In fact, the truth is that Farey trees are just a particular case of

a more general and symmetric Stern-Brocot trees.42–44 Both trees are generated by

precisely the same mathematical rule and, therefore, are very easy to mix when not

properly addressed. Thus, it is conceivable that the Stern-Brocot could play a more

prominent role in the description of entrainment than hitherto appreciated, some-

thing that needs to be sorted out. Furthermore, it has also been found that these

two trees might not be the only ones governing entrainment (e.g. an alternative

possibility is discussed in connection with Fig. 7 in Ref. 24).

Traditionally, entrainment and quasiperiodicty have been studied almost invari-

ably with the help of either non-autonomous flows or with maps slaved by “mod”

functions. Both situations imply external forcing. In this context, the enticing open

challenge is to study oscillators, governed by discrete-time equations or not, free

from the shackles of the slaving introduced by extraneous frequencies. The reduction

of higher-dimensional problems to the study of circle maps and rotation numbers

may be convenient to demonstrate theorems and non-measurable properties but

such reductions are not realistic or flexible enough to describe phenomena observed
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in real life applications like e.g. the driven Brusselator, modulated CO2 lasers, and

other driven systems.

Reassuring to the continued effort to understand the global organization of peri-

odic phases, of entrainment, and of quasiperiodicity is the fact that, with the steady

improvement of computational resources, an insightful observation of Lorenz57 re-

mains as valid today as when stated originally in 1992: “Now that computers have

become ubiquitous, carefully conceived numerical experiments can enable us to ex-

plore a fascinating mathematical world that has not yet opened its doors to classical

analytical procedures.”
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5. I. Prigogine and R. Balescu, Phénomènes cycliques dans la thermodynamique des
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