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We report some regular organizations of stability phases discovered among self-sustained

oscillations of a biochemical oscillator. The signature of such organizations is a nested arithmetic

progression in the number of spikes of consecutive windows of periodic oscillations. In one of

them, there is a main progression of windows whose consecutive number of spikes differs by one

unit. Such windows are separated by a secondary progression of smaller windows whose number

of spikes differs by two units. Another more complex progression involves a fan-like nested

alternation of stability phases whose number of spikes seems to grow indefinitely and to accumulate

methodically in cycles. Arithmetic progressions exist abundantly in several control parameter planes

and can be observed by tuning just one among several possible rate constants governing the enzyme

reaction. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921178]

A fruitful system to study the intricacies of the organiza-

tion of self-sustained oscillatory phases typical in nonlin-

ear dynamics is the peroxidase-oxidase (PO) reaction,

namely, the aerobic oxidation of nicotinamide adenine di-

nucleotide (NADH) catalyzed by the enzyme horseradish

peroxidase. For example, it was recently discovered that

a sophisticated state-of-the-art model of the peroxidase-

oxidase reaction, involving ten equations and 14 rate con-

stants, predicts a novel type of mixed-mode oscillations

(MMOs). In contrast to the familiar chaos-mediated

scenario, in the new unfolding periodic phases are not

separated by windows of chaos. The model predicts pre-

dominance of periodic states over chaos. Out of curiosity,

we decided to investigate what sort of organization would

be predicted by a much simpler enzyme reaction model

like, e.g., the vintage model proposed in 1983 by Olsen,

involving just four equations and nine parameters. Such

model has a distinctive and enticing cubic nonlinearity

involving the product of three different variables that

mix the dynamics in phase space, not the usual cubic

product of a single variable. This paper shows that,

indeed, Olsen’s model also predicts nonchaos mediated

transitions, similar in many aspects to the ones found for

the sophisticated model. It also predicts predominance of

periodic states over chaos. Surprisingly, however, Olsen’s

model reveals a number of unexpected dynamical regu-

larities, such as nested arithmetic progressions of oscilla-

tory phases which are described here.

I. INTRODUCTION

In the past few decades, studies of the complex dynam-

ics underlying biochemical systems have resulted in

discoveries and exciting functionalities in chemistry and bio-

chemistry. Thanks to continued developments of computer

hardware and the possibility of performing massive compu-

tations, one may address questions that were out of reach

just a while ago. For almost two centuries, chemical and bio-

chemical reaction systems have been notorious sources of

rich behaviors such as periodic,1,2 self-pulsating, bursting,

and chaotic oscillations.3–10

A plethora of complex dynamical behaviors are

typically present in enzymatic oscillators.3 Among them, a

prototypical system supporting intricate and exotic oscilla-

tory modes is the PO reaction, namely, the aerobic oxidation

of NADH catalyzed by the enzyme horseradish peroxidase.

The reaction mechanism of the PO system has been exten-

sively investigated during the last decades.6–15 The PO sys-

tem has been also object of experimental investigations16–18

and, for example, an experimentally determined stability dia-

gram for the system is known in the control plane spanned

by the NADH influx rate and the pH value of the medium.18

Recently, the structural organization of this control plane

was the object of a detailed numerical investigation,19 based

on a mechanism due to Bronnikova, Fedkina, Schaffer, and

Olsen,20 the so-called BFSO model. The BFSO mechanism

can reproduce with good agreement most of the experimen-

tally observed complex dynamics such as, for example,

chaotic, quasi-periodic, and mixed-mode oscillations.

The new predictions of the BFSO model refer to the

unfolding of MMOs, namely, to periodic cycles having a

certain number of large peaks intercalated by a number of

small peaks in one period of the oscillation. In classic

MMOs, the parameter intervals of distinct periodic oscilla-

tions are always separated from each other by windows

of chaos. In contrast, a new unfolding was found where

windows of chaos do not exist.19 MMOs are very common

patterns found in wide classes of nonlinear oscillators, as

described by several authors in a focus issue of Chaos dedi-

cated to MMOs21 and, more recently, e.g., in CO2 lasers.22

The BFSO model is governed by ten equations (nine of

them independent) and 14 rate constants and is computation-

ally quite demanding to investigate. Thus, we were moti-

vated to look for a simpler model that could provide useful
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insight with much less burden. The selected candidate is an

eight-step mechanism proposed by Olsen23

Bþ X!k1
2X; Y!k5

Q;

2X!k2
2Y; X0!

k6
X;

Aþ Bþ Y!k3
3X; A0$

k7
A;

X!k4
P; B0!

k8
B;

leading to a four-variable, nine-parameter model

_A ¼ k7ðA0 � AÞ � k3ABY; (1)

_B ¼ k8B0 � k1BX � k3ABY; (2)

_X ¼ k1BX � 2k2X2 þ 3k3ABY � k4X þ k6X0; (3)

_Y ¼ 2k2X2 � k3ABY � k5Y: (4)

Here, A corresponds to O2, B corresponds to NADH, and X
and Y represent intermediate free radicals.23

Although viewed as abstract and somewhat chemi-

cally unrealistic,16 Olsen’s model is popular because it

exhibits qualitative agreement with several experimental

features. Its control parameter space was not yet investi-

gated in depth and it is not immediately obvious if its

predictions are or are not compatible with those obtained

recently19 from the state-of-the-art BFSO model. There

are enough promising indications14 to motivate a system-

atic study. A dynamically interesting characteristic of the

model is related to the nature of its nonlinearities. Recent

works uncovered regular organizations underlying com-

plex motions in systems described by differential equa-

tions having cubic terms in one of the variables. For

surveys, see Refs. 24–26. Olsen’s model also contains

cubic nonlinearities which, however, arise as the product

ABY of three distinct variables governing the model, not

cubic terms resulting from the product of just a single

variable. Thus, it seems natural to ask what sort of orga-

nization could underly such elusive mixing of variables.

Olsen considered the dynamics observed when varying

k1 in the interval 0.3< k1< 0.41. He computed the phase dia-

gram reproduced in Fig. 1(a), where periodic regimes are

denoted by P‘, ‘ being the number of peaks (local maxima)

per period of the variable A. Except for the transition region

between P2 and P3, other transitions were found to be

“sharp,” i.e., without indication of chaos happening between

them. Subsequently, Steinmetz et al.27 studied the oscilla-

tions supported by the model, reporting a phase diagram

spanning the k3� k1 section of the control space, reproduced

here in Fig. 1(b). They do not define what they mean by

“simple” and “complex” oscillations. Figure 1(c) illustrates a

phase diagram obtained by us, classifying with colors the

number of peaks per period and, in black, revealing the pres-

ence of a (small) chaotic phase. Comparing Figs. 1(b) and

1(c), one sees that, rather than chaos, the “complex”

oscillations in Fig. 1(b) correspond predominantly just to

periodic oscillations with a growing number of peaks per

period. As indicated by the horizontal and vertical

sequences of dots, note the equivalence of the unfolding

of oscillations obtained when (i) holding k1 fixed and tun-

ing k3 or (ii) holding k3 fixed and tuning k1. Changing

both parameters can also produce similar unfoldings along

many paths.

Figure 1(c) is an example of the high-resolution stability

diagrams reported in this paper and Sec. II explains how

they are obtained. Section III describes the nested arithmetic

progressions and the global organization of stability phases

present in several control parameter planes of Olsen’s PO

model. Section IV summarizes the four types of arithmetic

progressions and their distinctive signatures. Our conclusions

and some open problems are present in Sec. V. Generally

FIG. 1. Phase diagrams illustrating the knowledge about stable oscillatory phases according to Olsen’s enzyme reaction model. Numbers denote the number of

peaks (local maxima) per period of A. (a) Original phase diagram, after Olsen,23 and (b) phase diagram after Steinmetz et al.,27 discriminating Hopf bifurcations

(HBs) and period doubling (PD). Note that their PD boundary is not always accurate. (c) Same as (b) but showing all stable phases. Colors display the number

of spikes of A per period. White denotes constant, i.e., non-oscillating (NO) solutions. Black represents non-periodic oscillations (chaos). The white box is mag-

nified in Fig. 2. The vertical line dividing the box marks the k1 interval in panel (a). Coordinates of the dots plotted vertically are given in Table I below.

064603-2 M. R. Gallas and J. A. C. Gallas Chaos 25, 064603 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.54.2.243 On: Fri, 22 May 2015 17:01:15



speaking, note that it is a matter of no little difficulty to dis-

tinguish the systematics (if any) of how self-sustained com-

plex oscillatory behaviors organize themselves in the control

space of nonlinear oscillators. The understanding of such

systematics is our leitmotiv.

II. COMPUTATIONAL DETAILS

Stability diagrams like the one in Fig. 1(c) are examples

of isospike diagrams,28–33 namely, diagrams recording the

number of peaks per period of a given component of the

oscillations. Such diagrams are the main tool used here to

characterize the unfolding of oscillations in control parame-

ter space. To produce them, a selected parameter window of

interest is covered with a mesh of N�N equidistant points.

For each point of the mesh, the temporal evolution is

obtained by integrating numerically Eqs. (1)–(4) using the

standard fourth-order Runge-Kutta algorithm with fixed

time-step h¼ 0.002. In all phase diagrams, integrations were

always started from an arbitrarily chosen initial condition,

A¼B¼X¼ Y¼ 0.5. The first 16� 106 integration steps

were disregarded as transient-time needed to approach the

attractor. The subsequent 16� 106 steps were used to com-

pute the Lyapunov spectrum (not shown here). To find the

number of peaks per period, subsequent to the computation

of Lyapunov exponents, we continued integrations for an

additional 40� 105 time-steps recording up to 800 extrema

(maxima and minima) of the variable of interest together

with the instant when they occur, and recording repetitions

of the maxima. When plotting time evolutions, integrations

were started from the arbitrary point (A, B, X, Y)¼ (1, 1,

0.01, 0.01), maintaining all other conditions above.

Following earlier works,9,23,27 we select the following

default values when parameters are not varying: A0¼ 8,

B0¼ 1, X0¼ 1, k1¼ 0.38, k2¼ 250, k3¼ 0.025, k4¼ 20,

k5¼ 5.35, k6¼ 10�5, k7¼ 0.1, and k8¼ 0.825.

As indicated by the colorbar in Fig. 1(c) and similar fig-

ures below, a palette of 17 colors is used to represent the

number of peaks (local maxima) contained in one period of

the oscillations. Patterns with more than 17 peaks are plotted

by periodically recycling the 17 basic colors. Multiples

17� ‘ of 17 are plotted with the color index corresponding

to (18 � ‘) mod 17, namely, 34� 16 for ‘¼ 2, 51� 15 for

‘¼ 3, 68� 14 for ‘¼ 4, etc. Black is used to represent

“chaos” (i.e., lack of numerically detectable periodicity),

light-pink corresponds to divergent solutions, and white and

orange mark non-oscillatory solutions, if any, having,

respectively, non-zero or zero amplitudes of the variable

under consideration. The computation of stability diagrams

is numerically a quite demanding task that we performed

using in-house developed FORTRAN software to generate

Postscript bitmaps, and with the decisive help of up to 1536

processors of a SGI Altix cluster having a theoretical peak

performance of 16 Tflops. While it is possible to observe

period-doubling (PD) routes, most of the times what happens

is just the addition of a new peak to the waveform (without a

corresponding doubling of the period). Note that the period

is a quantity that evolves continuously when parameters are

changed, while the number of peaks is a “quantized”

quantity, namely, a quantity that changes in discrete steps.

The mechanism responsible for peak addition is described

elsewhere.34,35 Eventually, after adding peaks, one may

reach a situation where the period roughly doubles a numeri-

cal value observed previously. But such coincidence occurs

for very specific parameter values, not for parameter inter-
vals. The computation of stability diagrams is a standard cal-

culation that we performed as described in detail, e.g., in

Ref. 38 where efficient methods to deal both with numerical

and experimental data are given. See also Refs. 39–42.

Each panel in Fig. 5 was obtained by analyzing a mesh

of N¼ 600 parameter points. All other phase diagrams are

bitmaps displaying individually the analysis of 1200� 1200

¼ 1.44� 106 parameters, i.e., of sets containing the analysis

of more than a million points in parameter space. To

decrease the size of papers, beware that publishers routinely

tend to severely reduce the resolution of the figures, some-

thing unfortunate and beyond our control that frequently

destroys information originally contained in the diagrams.

III. NESTED ARITHMETIC PROGRESSIONS

We begin with an alert concerning inaccurate language

commonly used when describing bifurcations generated by

flows, i.e., by continuous-time dynamical systems. Period-

doubling bifurcation was first described for maps (discrete-

time systems) where a degenerate situation occurs. Subsequent

to period-doubling, the period of maps remains constant over
extended parameter windows. In sharp contrast, in flows, the

period does not remain constant when parameters are varied.

But there are quantities (other than the period) which remain

constant over extended parameter intervals, e.g., the number of
peaks (local maxima) per period and the number of local

minima.

Figure 2 displays a series of stripes which, together,

form a pair of nested arithmetic progressions of stability

phases. Phases are labeled by the number of peaks per period

of their oscillations. The progressions are formed by an alter-

nation of wide and narrow stripes. So, there is a main pro-

gression formed by wide stripes 2! 3! 4! 5!…, and

a secondary progression of much narrower stripes 5 ! 7 !
9!… embedded between adjacent stripes of the main pro-

gression. In the main progression, the number of peaks

increases by one unit, while in the secondary it grows by two

units. The number of spikes of a secondary stripe corre-

sponds to the sum of the number of spikes of the stripes

adjacent to it (and which belong to the main progression).

The two rows on the top of Fig. 3 show typical temporal

evolutions of A and B, respectively, as indicated by the

labels. The leftmost column shows a time series with 2

peaks, the central column has 5 peaks, while the rightmost

column has 3 peaks. These signals are for parameters con-

tained in the regions labeled as 2, 5, and 3 in Fig. 2(a).

Clearly, these plots illustrate characteristic time evolutions

observed for parameters belonging to both nested progres-

sions: The 5-peaked pattern is the “sum” of its adjacent

patterns. The bottom row shows A�B projections of the per-

iodic attractors for the five points labeled as 2, 5, 3, 7, and 4

in Fig. 2(a). These projections show unambiguously the
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concatenated nature of the patterns belonging to the second-

ary progression.

How do transitions between stripes occur? As men-

tioned, Olsen found that except for chaos observed between

the region with 2 and 3 peaks in Fig. 1(a), other transitions

were “sharp,” i.e., without indication of chaos happening

between them. However, under high-resolution, we find a

distinct picture to emerge. As it may be recognized from the

structure of the black chaotic phase in Fig. 2, narrow stripes

of chaos exist on both sides of the five peaks “finger” where

the secondary progression begins. Such stripes of chaos

continue to exist when k1 and k3 increase, as it is visible in

FIG. 2. Stability diagrams with color stripes indicating oscillatory phases characterized by the number of peaks per period of the variable A. (a) Enlargement

of the white box in Fig. 1(c) indicating the nested sequence of arithmetic progressions: The main sequence 2! 3! 4! 5!… of larger stripes, and a sec-
ondary sequence 5! 7! 9!… of finer stripes embedded between pairs of stripes of the main progression. The vertical line marks the interval studied by

Olsen,23 while the interval indicated by the horizontal line segment was studied by Steinmetz et al.27 The white box is enlarged in Fig. 4. (b) A pair of circles

indicating that chaos exists on the tips of the “fingers” of the secondary progression. A similar circle is shown in (a).

FIG. 3. The two top rows show the temporal evolution of A and B for parameter points inside the first three stripes 2, 5, and 3 in Fig. 2(a), whose coordinates are

given in Table I below. Patterns in the middle column (for 5 peaks) correspond to a concatenation of the adjacent patterns, with 2 and 3 peaks. Their periods obey

T5�T2þT3. The bottom row illustrates A�B projections of the oscillations for the first few points in Fig. 2(a). Two progressions can be easily distinguished: Panels

for 2, 3, and 4 peaks belong to the main progression, while panels for 5 and 7 peaks belong to the secondary projection. Note the growing amplitudes of the oscilla-

tions, specially B. Progressions between oscillations having 2, 5, 3 peaks were already observed experimentally in the enzyme reaction by Hauser et al.17,18
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Fig. 1(c). Stripes of chaos become extremely narrow as k1

and k3 further increase and it is not possible to discern

numerically if they disappear or simply become too narrow

to be detected. What is clear, however, is that relatively

broad chaos exists at the tips of the fingers of the secondary

progression. The tip of the next two pairs of fingers from the

secondary progression is indicated by circles in Fig. 2(b).

They correspond to narrow stripes of oscillations with 7 and

9 peaks. Figure 2(b) does not contain the 2-peaks stripe that

is clearly visible in Fig. 2(a). The reason for this is that

stripes seem to end in specific regions of the control parame-

ter space and that at such endings the regularities observed

elsewhere may be broken in the sense that in these regions

the progression of stripes can be truncated, particularly for

stripes with fewer number of peaks. Several domains seem

to end in the form of a hook.

Figure 2 corroborates Olsen’s original description. In

particular, with the benefit of hindsight, one may now recog-

nize that the sequence 3–7–4 recorded by Olsen in his

Fig. 1(a) corresponds to the portion of the nested arithmetic

progressions that lies on the lower part of the vertical line in

Fig. 2(a). Figure 2(b) shows that the chaotic phase, although

relatively small when compared to the large nearby domains

of periodicity, reappears in several other locations. It would

be interesting to investigate the mechanism that leads to

chaos in these rather specific positions in control parameter

space.

Subsequently to Olsen,23 Steinmetz et al.27 reported an

interesting study of the impact of varying k3, the parameter

believed to play a role similar to the important cofactor DCP

(i.e., 2,4-dichlorophenol) used in in vitro flow experiments

and whose variation resulted in changes in oscillation pattern

very similar to those observed in Olsen’s model.9 In their

Fig. 6, Steinmetz et al.27 show a sequence of oscillations

obtained while holding k1¼ 0.35 fixed. They described such

sequence as corresponding to a typical period-doubling cas-

cade, starting from an oscillation at low k3 values, through a

period-two state, period-four state, and so on until chaos is

reached. Chaos consists of a window located roughly in the

interval of 0.033< k3< 0.038, followed by a period-three

window. The oscillation for k3¼ 0.0336 described in their

Fig. 6 does not correspond to period-four but to period-8,

apparently invalidating the claim of a doubling route in the

region.

To elucidate the existence or not of a doubling route

along the line k1¼ 0.35, in Fig. 4 and in Table I one records

the points b, c, d, and e considered by Steinmetz et al.27 As

mentioned, although point c is not in the 4-peaks region,

there is a continuum of 4-peaks oscillations located roughly

in the k3-interval [0.03315, 0.03515] with the period varying

in [47.9020, 48.0275], respectively. For the point b0 listed in

Table I, we obtain the following rates for the period

increase:

Tb

Ta
¼ 1:8966;

Tb0

Tb
¼ 2:0011;

Tc

Tb0
¼ 2:0015:

The point b0 was chosen so as to optimize the ratios. As it is

clear from Fig. 4, the above ratios will change if one moves

either b0 or any of the other points involved to different loca-

tions in their windows, making it plain that the periods and

their rates change continuously with parameters.

Figure 4 shows two additional facts concerning the

unfolding of bifurcations. First, when k3 increases, the dou-

bling route reported by Steinmetz et al.27 indeed exists but it

is restricted to a rather small window of parameters. Under

low-resolution, one may be easily mislead into thinking that

the 8-peaks phase is followed by a sharp transition to chaos,

what is not the case. Second, Olsen described doubling

routes to exist on the boundary of the three-peaks phase

when either increasing or decreasing the value of k1. Along

this boundary, we find multistability to be abundantly

FIG. 4. Stability diagram showing the points reported by Steinmetz et al.27

Colors represent the number of peaks per period, black denotes chaos. When

point b0 is added (see Table I), their corrected sequence corresponds to a

doubling of the number of peaks (not period) of the oscillations.

TABLE I. Representative points inside the two nested arithmetic progres-

sions. Points in the secondary progression are indicated by asterisks. The six

points at the bottom refer to the doubling route discussed by Steinmetz

et al.27 See the text.

Point k3 k1 Peaks Period

1 0.051 0.51 1 11.7845

2 0.051 0.46 2 22.8595

3 0.051 0.415 5* 53.8105

4 0.051 0.39 3 30.9710

5 0.051 0.376 7* 70.2110

6 0.051 0.36 4 38.6395

7 0.051 0.3495 9* 85.6520

8 0.051 0.338 5 45.8920

9 0.051 0.3267 11* 100.3795

10 0.051 0.318 6 52.8180

11 0.051 0.3078 13* 114.2505

12 0.051 0.298 7 59.4200

13 0.051 0.2915 15* 127.7075

14 0.051 0.284 8 65.9295

a 0.027 0.35 1 12.6425

b 0.033 0.35 2 23.9785

b0 0.0333 0.35 4 47.9825

c 0.0336 0.35 8 96.0380

d 0.035 0.35 Chaos Chaos

e 0.038 0.35 3 33.3755
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present, meaning that it is possible to observe either sharp

transitions to chaos or the smooth doubling route.

Are nested arithmetic progressions of peak-adding

phases observable when tuning other parameters than k1 and

k3? Figure 5 shows this to be indeed the case. From the equa-

tions of motion, one sees that the three sections k3� k1,

k3� k2, and k1� k2 considered here exhaust all possible

combinations of the nonlinearities in them. In these three

planes, similar phenomena are clearly visible although

details of the specific arrangements may differ slightly. An

evident characteristic of the structural organization of the

stability phases is that their unfolding is too complex to be

described by other means than purely graphic. Multistability

is also visible in several regions. A detailed investigation of

the two additional parameter planes in Fig. 5 remains to be

done, as well as the investigation of the several planes

involving linear terms in the equations of motion.

Figure 6 shows an enlargement of the box in Fig. 2(a),

illustrating how complex and diverse the stability striations

inside the phase of chaos can be. The structure having 16-

peaks in the main domain is a shrimp.43–45 The rightmost

stripe is in fact a kind of self-connected pair of 19-peaks

shrimps. Between these two striations, there is a crossing-

over of two stability domains with 7 and 12 peaks, as indi-

cated. Under the low resolution of Fig. 2, they all appear to

be identical striations embedded in chaos, which is not the

case. The classification of these and other striations remains

an open challenge. Much more complicated periodic phases

FIG. 5. Stability diagrams showing that regular tilings and nested progressions are also observable in other control parameter planes. Multistability is also visi-

ble in several regions. Note that between the 4-peak and 5-peak “petals,” or fingers, in panels (b) and (e) there is an accumulation of a large number of similar

but smaller fingers. The same is true for other pairs of fingers. In the top row, we fixed k1¼ 0.38, while the bottom row is for k3¼ 0.025.

FIG. 6. Magnification of the white box in Fig. 2(a) illustrating the diversity

and complexity of the stability stripes living inside the phase of chaos: A

shrimp43–45 having 16-peaks in the main stability domain, and a complex

folding involving a self-connected structure with 19-peaks, a sort of

“double” shrimp. Between them, one finds the crossing-over of two stability

domains characterized by 7 and 12 peaks, as indicated.
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exist embedded in the chaotic phases in Fig. 2 but will not be

discussed here.

IV. TYPES OF NESTED PROGRESSIONS

Section III has shown that arithmetic progressions or,

equivalently, adding cascades are organized differently than

the familiar geometric progressions associated with doubling

cascades. Recall that in maps (discrete-time systems) the

quantity undergoing doubling is the period, while for differ-

ential equations (continuous-time systems) doubling occurs

in the number of peaks per period. Implicitly, underlying the

notion of “period doubling” are parameter intervals where

the period remains constant. In sharp contrast, no equivalent

intervals exist for continuous-time systems (flows) because

the period evolves continuously with parameters. In

continuous-time systems, a quantity that remains constant

along parameter intervals is the number of spikes per period,

not the period. Accordingly, period-doubling in maps may
be associated to spike-doubling in flows, and vice-versa.

Period-doubling, a familiar signature of maps, was dis-

cussed theoretically and numerically with high-precision in

1958–1963 by Myrberg using an early version of a computer,

an “Elektronenmaschine” as he called it.46–50 With more

amplitude and new twists, period doubling was discussed

subsequently in 1976 by May,51 in 1977 by Grossmann and

Thomae,52 and in 1978 by Coullet and Tresser56,57 and

Feigenbaum.58 Adding phenomena in maps were studied in

1982 by Kaneko.53 In experiments, adding phenomena were

observed as early as 1927 by van der Pol and van der Mark

in a neon discharge.54 Although electronic models of plasma

discharges involve differential equations,39 a theoretical

investigation of the adding phenomenon motivated by their

discharge was provided only much later, in 1990, in a nice

paper by Levy55 based, however, on a certain implicit map,

not on differential equations.

Geometric and arithmetic progressions of stability

phases evolve quite differently. In maps, geometric progres-

sions involve periodic orbits forming doubling sequences

k‘¼ k02‘, for ‘¼ 0, 1, 2, 3, …, where k0 is the main period of

the window. Transitions between consecutive windows k‘
and k‘þ 1 are continuous, in the sense that the passage is not

mediated by a window of chaos. Doubling cascades end

invariably in chaos, i.e., they accumulate towards a phase of

chaos. In contrast, arithmetic progressions involve k-periodic

phases which grow linearly according to k‘¼ k0þ ‘ Dk,

where D¼ 1, 2, 3, …. This linear growth is usually referred

to as period-adding. As seen in Figs. 2 and 5, adding transi-

tions may or may not be mediated by windows of chaos.

Adding cascades accumulate towards phases characterized

either by a constant period (for maps) or by a constant num-

ber of peaks (for flows) as shown in the figures here, in Fig.

5 of Ref. 35 for a CO2 laser with feedback and in Figs. 2 and

4 of Ref. 36 for a damped-driven Duffing oscillator.

How many distinct types of arithmetic progressions are

there and what are the characteristic signatures to discrimi-

nate them in laboratory experiments and with computers?

Thus far, we identified four types of adding cascades which

are found to exist abundantly over wide parameter windows.

They may be easily distinguished by considering the specific

nature of what separates consecutive phases with k and kþ 1

peaks per period. First, the most familiar adding transitions

are the ones mediated by windows of chaos, as frequently

observed in mixed-mode oscillations.21,22 Second, there are

mixed-mode oscillations where windows of chaos are totally

absent19,35 (see the previous paragraph). Third, there are the

transitions involving concatenated periodic oscillations and

nested progressions as described in Figs. 2 and 3. Fourth,

there is a beautiful and highly nested type of transition medi-

ated by complex but regular alternations of smaller and

smaller phases with an ever growing number of peaks per pe-

riod that accumulate methodically, as illustrated in Fig. 7(b)

and, less clearly, in several panels of Fig. 5. In this transition,

individual phases are separated by windows of chaos and

form sequences of nested arithmetic progressions ‘¼ 1, 2, 3,

FIG. 7. The fan-like self-similar bridge cascade of nested arithmetic pro-

gressions connecting stability domains with k and kþ 1 peaks per period. (a)

Peak adding bridging “petals” with 4, 5, 6, … peaks per period. Circles have

the same meaning as in Fig. 2(b). (b) Enlargement of the bridge between pet-

als 4 and 5. The bridge is formed by self-similar filamentary phases of an

ever growing number of peaks per period, forming a sort of akomeogi.
Phases with higher number of peaks accumulate on both sides of every pair

of smooth boundaries.
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…, each one characterized by a constant difference D‘
between consecutive phases. As seen in Fig. 7(b), progres-

sions with peaks increasing by D‘ accumulate towards a

larger phase having D‘ peaks per period. These arithmetic

progressions are believed to be not restricted to Olsen’s flow

but to be also observable in other dynamical systems.

Figure 7(b), an enlargement of the small cyan box in

Fig. 5(d), shows that between the large “petals,” character-

ized by oscillations with 4 and 5 peaks per period, there is a

complex fan-like self-similar accumulation of a growing

number of smaller and smaller fingers. Stability phases

between the 9 and 5 petals are arranged in hierarchies of

additional progressions which increase by 5 peaks, while

between petals 9 and 4 the progressions increase by 4 peaks.

The first few phases are indicated by their number of peaks.

The next generations display a self-similar arrangement

which apparently repeats ad infinitum. The pair of smooth

external boundaries of each phase are accumulation lines for

hierarchies of phases with higher number of spikes which

converge to them on both sides. The fan-like hierarchy of

phases seen in Fig. 7(b) exists profusely in other parameter

regions. As may be recognized from the stability diagrams

above, all four types of arithmetic progressions may coexist

in the same dynamical system. Progressions appear in a spe-

cific parameter region and seem to evolve continuously from

one type into another when parameters are tuned. It would

be nice to investigate whether or not fan-like bridges share a

common origin with the structural organization observed in

maps when phases of complex-valued oscillations are stabi-

lized by real-valued changes in parameters.37 Fan-like

bridges seem to play a pervasive role in nonlinear dynamics

since we observed them also in a few other systems. These

bridges and their filamentary phases are now under

investigation.

V. CONCLUSION AND OUTLOOK

This paper provided a provisional description of the

unfolding of periodic oscillations as seen from sections of

the control parameter space of Olsen’s enzyme reaction

model. A more encompassing classification of the intricate

combinations of chaotic and non-chaotic phases visible in

our stability diagrams demands much more investment of

computer time and experimentation. Particularly, enticing is

to try to understand the generic unfolding of the fan-like sce-

nario of Fig. 7. An open challenge is to classify the unfolding

of wave pattern complexification by peak deformation and

adding when several parameters are tuned simultaneously.

The impact of the linear terms in the equations of motion

remains totally unexplored. Olsen’s model involves nine

parameter values and it is not immediately obvious that the

specific parameter sections considered here are optimal to

expose generic trends. Much work remains to be done in

order to discover the structural properties of the control

parameter space. The aforementioned distinctive product of

three variables needs to be found and probed in other models

to assess its influence.

Hauck and Schneider16 reported experimental observa-

tions of the peroxidase-oxidase reaction, in particular, they

recorded experimental doubling routes to chaos in a Farey

sequence by varying the O2 flow. They found that the simple

Olsen model shows a similar scenario as the experiments.

They reported observing a Farey sequence when changing

k7, a rate constant controlling a linear term in the dynamical

equations. Although observing just quite limited sequences

of oscillations, they interpreted them as belonging to a Farey

tree, apparently unaware that the arithmetic sum rule p1/q1 �

p2/q2¼ (p1þ p2)/(q1þ q2), which they used as evidence to

claim observing the asymmetric Farey tree, is a sum rule that

can be used equally well to identify a distinct and much

more general organization: the symmetric Stern-Brocot

tree.28–30,59 In other words, although frequently used in older

literature, fits of the aforementioned arithmetic sum rule to

noisy and small sets of data are by no means enough for a

conclusive and unambiguous identification of the nature of

the underlying organizational tree. Thus, it would be nice to

reconsider the experiments and check if they could eventu-

ally support the Stern-Brocot scenario. More specifically, to

check under higher resolution and for wider range of param-

eters and resolution whether or not the k7 space is home of

Farey or Stern-Brocot trees. In the last four decades, consid-

erable effort has been devoted to studying chaos. But under-

standing progressions of periodic solutions is as important an

issue as chaos.
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