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1. INTRODUCTION 

In recent years there has been much interest in obtaining 
eigenvalues for relatively complicated potentials, particularly 
for those situations where perturbation theory is not applicable. 
Motivation for this interest is not hard to discern: On the one 
hand, there are the various strong-field problems of condensed­
matter-, atomic- and astro-physics [1-7]; and, on the other hand, 
there are the extensive investigations of the charmonium spectrum 
[8-10]. Many of these studies have been concerned with the one­
dimensional potential 

V(p) ~ + rt 2 p pz + stp + tp (1) 

where r20 and q,t>O. For simplicity, we may also take s>O, since 
this covers many of the cases of interest. 
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Table 1 provides a listing of those physical problems encom­
passed by the potential of Eq. (1). In particular, this poten­
tial is precisely that one considered in many investigations of 
the charmonium energy spectrum [8-10]. When r=s=O, the quasi­
Landau spectrum with magnetic quantum number m=O results [2]; 
whereas, if only s=O, the more general quasi-Landau spectrum (m~O) 
results [3]. If the p2 term is omitted, the potential has the 
same form as that for the well-known Stark problem [7]. And, 
finally, this potential is also appropriate for treating the case 
of electrons at the surface of liquid helium [1,5] in the pres­
ence of crossed electric and magnetic fields [6]. 

In Section 2 we obtain a WKB solution of the eigenvalue prob­
lem resulting from Eq. (1); and, in Section 3 we present a brief 
discussion of some applications. 

2. SOLUTION OF THE EIGENVALUE PROBLEM 

Our purpose here is to extend a previously employed tech­
nique [4] in order to solve the spectral problem for Eq. (1). We 
start from the well-known WKB result for the energy E: 

(2M)~ fP2 [E - V(p)]~ dp = (n + ~) ~ (2) 
PI 

where M is a particle mass (usually that of the electron), and 
where PI and P2 are the WKB turning points. Thus, from 

Table 1. A List of Physical Problems Encompassed by the 
Potential yep) = _.9.!. + 3- + stp + tp2. 

p p 

Physical Problems 

Quasi-Landau (m=O) 

Quasi-Landau (mpO) 

Stark Effect 

Electrons at the Surface of Li­
quid Helium in an Electric Field 

Electrons at the Surface of Li­
quid Helium in Crossed Electric 
and Magnetic Fields 

Charmonium 

Non-Contributing Terms in yep) 

r=s=O 

s=O 

2 term is omitted p 

2 term is omitted p 



SPECTRUM OF A ONE-DIMENSIONAL POTENTIAL EQUATION 723 

Eqs. (1,2) we may write 

I = JP2 ~(_p4_sp3+pp2+qp_r)~ - (+h) ~fi 
PI P - n 2 (2Mt)~ (3) 

where p = Eft, and where PI < P2 are the two real and non-nega­
ti ve roots of 

4 3 2 2 -P -sp +PP +qp-r = (p-P1)(P2-P)(P -2Xp+Y) o. (4) 

It is convenient to define a generic integral 

JP2 i 4 3 2 -~ I = P (-p -sp +PP +qp-r) dp 
i PI 

(5) 

which allows us to rewrite Eq. (3) as 

I = -13 - sI2 + pI l + qIO - rI_1. ( 6) 

One may also verify, using integration by parts, that [4] 

s 1 
I = 13 + 212 + ZqIO - rI_ 1· (7) 

Combining Eqs. (6,7), we obtain 

(8) 

A very useful observation can now be made: Namely, that the struc­
ture of the polynomial occurring in Eq. (4) is the same as that 
for the s=O case [4], with the only difference bein? the numeri-
cal values of the four roots PI, P2, and X ± (X2_y) '2. Thus, 
the integrals 11 , 10 and 1_1 are exactly the same as described 
previously [4] and depend only upon K and IT (the complete ellip­
tic integrals of the first and third kinds, respectively) [10]. 
We refer to [4] for explicit results. 

The only new integral we must evaluate is 12 ; and, we find 
that this integral depends not only upon K and IT but also upon E 
(the complete elliptic integral of the second kind). As in all 
problems of this nature [2-4], there are two cases to consider, 
namely E>Vc and E~Vc, where Vc is the relative minimum of V(p) 
along the negative P-axis. As before [4], we use the results of 
Byrd and Friedman [11] to obtain: 

(i) if E > Vc 

J: 2 2 ( P Z-d ) 2 
12 = g \d K(k) + 2d(p 2-d) IT(a ,k) + 2(a2-1)(k2-a2) 

xG2 E(k) + (k2_a2) K(k) + (2a2k2+2a2_a4_3k2) IT(a 2,kil} (9) 
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( ii) 

I = 
2 

+ 2(P2-P1) (A+B) n(U2 k) _ 2AB(A+B)2 
(P1A+P2B) l' (P1A+P2B)2 

n(ai. k) + ~l~:2)2 K(k) -~~i )'E(k~} (10) 

The various symbols introduced in Eqs. (9,10) are defined in [4], 
with the exception of a: 

(11) 

To summarize, we have analyzed a relatively complicated four 
term potential, using WKB techniques, and have succeeded in ob­
taining an analytic solution for the eigenvalues in terms of el­
liptic functions, of which there are only three kinds. We res­
tricted ourselves to s>O (which is the actual case for many appli­
cations and, in particular, for those discussed below) in order 
to avoid a double-well potential and the associated tunneling and 
energy shifts [12,13]. In the future, we will return to the s<O 
situation in order to consider potentials similar to those depic­
ted in Fig. 2 of [12]. This will require an extension of the 
work of [12], which was restricted to a harmonic double-well po­
tential, by inclusion of the more general potential. For now, we 
turn to a brief discussion of a variety of physical problems to 
which our results are applicable. 

3. APPLICATIONS 

3.1 Quasi-Landau Resonances 

A problem which has attracted enormous interest in recent 
years is that of the motion of a spinless electron in combined 
Coulomb and magnetic fields. It is relevant to investigations in 
such diverse areas as condensed-matter-, atomic- and astro­
physics; and, it is fascinating per se, from a theoretical point 
of view, because it is an outstanding example of a nonseparable 
problem. If the Schrodinger equation for this combined-field 
problem is written in cylindrical coordinates, it can be shown 
that the problem is reducible to two-dimensional motion in p-z 
space, where p2= x2 + y2, However, if we set z=O, motion in a 
one-dimensional potential results [2]: 

-f\.2 T e2 1 2 2 
V (p) = 2M Pz - p + 8 Mw P ( 12) 

where w = eB/Mc is the cyclotron frequency; B is the magnetic 
field strength; and T is a known function of the magnetic quantum 
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number m. 

The z=o approximation has been shown to give good agreement 
with the experimental results of Garton and Tomkins [14]. These 
authors [14] studied the absorption spectrum of barium in a mag­
netic field of 24 kG, for n values as high as 75, and found broad 
resonances spaced by approximately 1.5 fiw near E=O. These so­
called quasi-Landau resonances were observed only in the cr spec­
trum (~m=±I); and, since the cr lines result from states which are 
essentially localized in the x-y plane, we obtain a better apprec­
iation of why the z=O approximation works so well. 

It is clear that Eq. (12) is a special case of the general 
potential given in Eq. (1) and corresponds to taking s=O. Since 
we have already discussed the solution to this problem at length, 
we refer to our previous· work [2-4] for details. 

3.2 Stark Effect 

This is a classic problem which has recently returned to the 
forefront of interest because of the plethora of experimental in­
vestigations of highly-excited states (Rydberg states) brought 
about by the availability of laser techniques. For many of these 
investigations, perturbation theory is no longer adequate because 
of the relative weakness of the Coulomb field, vis-a-vis the elec­
tric field, for high-Rydberg states. It is well-known that the 
Hamiltonian for this problem can be separated in parabolic coord­
inates, resulting in two Schrodinger radial-like equations in the 
now familiar s = r+z and n = r-z coordinates. The corresponding 
potentials are special cases of Eq. (1) [the p2 term is missing] 
and a detailed WKB solution, in terms of the elliptic integrals 
discussed above, has recently been presented [7]. 

3.3 Electrons at the Surface of Liquid Helium 

Electrons outside a free surface of liquid helium are trap­
ped in an image potential, which is essentially one-dimensional 
Coulombic [1,5,6]. In addition, there is a 1 eV potential bar­
rier at the surface which prevents electron penetration. As a 
result, the electrons are trapped in a one-dimensional well, giv­
ing rise to quantized states in a direction (z say) perpendicular 
to the surface. The potential is given by 

2 
V(z) = -Ze /z (13) 

where Z = ~(£-l)/(£+I) = 6.951 x 10-3. If we now assume that the 
barrier is infini te at the origin, we are led to a "hydro genic" 
spectrum for electrons trapped at the surface. Some interesting 
characteristics of this spectrum have been discussed by Grimes, 
et al. [15]. It was found to be convenient experimentally to 
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apply an electric field F to the system [15] since this configur­
ation permitted investigations to be carried out at a fixed fre­
quency, while the energy separations were varied by means of the 
electric field. However, the presence of an electric field gives 
rise to an extra term in the potential, namely eFz. We have al­
ready presented a WKB solution to this problem [5], the potential 
being the same as that of Eq. (1) with the p2 term omitted; the 
corresponding z-2 term which arises in this problem comes from 
the Langer-type correction to the potential [4,16], a correction 
which is necessary if one wishes to use the WKB method, derived 
for the one-dimensional range (-00,+00), in problems where the 
range is restricted to (0,+00). 

Zipfel, Brown and Grimes [6] next applied a magnetic field 
along the surface (B=By say). Following these authors [6], if 
one chooses a gauge A = (zB,O,O), the Hamiltonian can be written 
as 

H 1 2 2 2 Ze2 
2M (px - ~BZ) + 2~ (Py + Pz ) - --z-- + eFz . (14) 

Since Px and p commute wi th H, it is clear that they are both 
constants of the motion. Moreover, the motion in the z-direction 
is governed by the potential 

v(z) 
2 2 

(-wp + eF)z + ~ Mw z 
x 

(15) 
z 

where, again, w = eB/Mc, and where Px now refers to the eigen­
value rather than to the operator. 

Finally, since O(z(oo, the Langer correction contributes a z-2 
term to Eq. (15); hence, the potential which results is similar 
to that of Eq. (1), provided F is large enough (or else Px and/or 
B are small enough) that the coefficient of z in Eq. (15) is pos-
1t1ve. In essence, then, the problem is solved and a detailed ex­
position of the numerical predictions will be presented in anoth­
er venue. 

3.4 Charmonium 

The suggestion, by Gell-Mann and Zweig in 1964, that quarks 
are the fundamental building blocks of elementary particles has 
had a profound influence on high-energy physics research. The 
original proposal was a three-quark model (up, down and strange 
quarks) but, shortly thereafter, Bjorken and Glashow suggested 
the existence of a fourth quark (called "charm"). Then, in 1974, 
a revolution occured in high-energy physics following the discov­
ery of the famous $/J particle. It is now well-established that 
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this particle is a particular bound state of the charmed quark 
and its anti-particle. Such a bound state, the net charm quantum 
number of which is zero, is called "charmonium". The lji/J 
particle is simply the 13S1 state of the charmonium spectrum, a 
spectrum which, at least as far as nomenclature is concerned, can 
be compared to the positronium spectrum. Our knowledge of the 
interquark forces is still somewhat phenomenological but it is 
generally accepted that the potential is of the form 

VCr) = - ~ + ~r + \r2 + ... 
r 

(16) 

The force between quarks is propagated by gluons, in analogy to 
the photon propagation of electromagnetic forces, but here the 
situation is more complicated in that one must deal with a non­
Abelian gauge theory (known as quantum chromodynamics, QCO). How­
ever, in the non-relativistic limit it is known that a Coulomb­
type force arises at small distances, which rationalizes the 
first term of Eq. (16), where B is a measure of the gluon force 
(observations imply that B ~ 0.25). The other terms in Eq. (16) 
represent the "confining potential" which prevents break-up of 
the system; these terms are introduced, without any basic theore­
tical underpinning, to understand the observed level spacings. 
Perhaps it should be emphasized that the potential given in Eq. 
(16) is inserted into the three-dimensional Schrodinger equation; 
then, the usual transformation R(r) ~ ~(r) = r R(r) provides a 
one-dimensional equation for the modified radial wavefunction 
~(r), with the potential also being modified by the addition of a 
centrifugal term fi2 ~(~+1)/2Mr2. This latter term is further mod­
ified by the Langer correction to give ~2 (~+1/2)2/2Mr2. Such a 
term, when added to the VCr) appearing in Eq. (16), results in, 
once more, a potential which is a particular example of Eq. (1). 

4. SUMMARY 

We have used WKB techniques to obtain analytic solutions, in 
terms of elliptic functions, for the eigenvalues of the potential 
given in Eq. (1). In addition, we have shown that this solution 
provides a general framework which can be used for the considera­
tion of a large class of problems, the so-called strong-field 
problems: That is, problems in which more than one field makes 
comparable contributions to the basic forces and energies. Also, 
for some of these strong-field problems we have already demonstra­
ted in detail the accuracy of our results, by comparison with ex­
periment and other theoretical investigations [2-5]. 
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