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The impact of predator dormancy on the population dynamics of phytoplankton-zooplankton in

freshwater ecosystems is investigated using a simple model including dormancy, a strategy to avoid

extinction. In addition to recently reported chaos-mediated mixed-mode oscillations, as the carry-

ing capacity grows, we find surprisingly wide phases of nonchaos-mediated mixed-mode oscilla-

tions to be present well before the onset of chaos in the system. Nonchaos-mediated cascades

display spike-adding sequences, while chaos-mediated cascades show spike-doubling. A host of

braided periodic phases with exotic shapes is found embedded in a region of control parameters

dominated by chaotic oscillations. We describe the organization of these complicated phases

and show how they are interconnected and how their complexity unfolds as control parameters

change. The novel nonchaos-mediated phases are found to be large and stable, even for low

carrying capacity. Published by AIP Publishing. https://doi.org/10.1063/1.5016434

This paper reports a systematic investigation of the control

parameter space of a model system incorporating effects

of predator dormancy on the population dynamics of

phytoplankton-zooplankton in freshwater ecosystems.

Such a model was recently found to support chaos-

mediated mixed-mode oscillations. In contrast, the present

paper reports the discovery of surprisingly wide regular

phases of nonchaos-mediated mixed-mode oscillations

found to precede the onset of chaos in the system as the

carrying capacity grows. Nonchaos-mediated cascades

were observed only recently in distinct systems. They are

characterized by spike-adding sequences of oscillations,

while chaos-mediated cascades display the more common

spike-doubling sequences of oscillations. Abundant peri-

odic phases with exotic shapes are found embedded in a

region of control parameters dominated by chaotic oscilla-

tions. The organization of all these complicated stability

phases is described in detail. Furthermore, we show how

phases of complex oscillations are interconnected and how

their complexity unfolds as control parameters vary. Even

at relatively low carrying capacity, nonchaos-mediated

phases are found to be large and stable.

I. INTRODUCTION

The equilibrium of the classical prey-predator ecosys-

tems is known to be destabilized when the carrying capacity,

i.e., the environment maximal load, of the prey increases.1

Typically, under this circumstance, prey-predator models

display Hopf bifurcations. The effect of such bifurcations is

to destabilize the static coexistence of prey and predators in

favor of stable periodic cycles. As the carrying capacity

increases following the bifurcation, the amplitude of the

periodic orbits also increases, with the decrease in the mini-

mum value of the population density. This dynamical inter-

play acts so that population extinction due to stochastic

environmental perturbations becomes more likely. This is

known as the paradox of enrichment.2 However, this does

not need to be the only scenario. As discussed by Kuwamura

et al.,3 the extinction of populations is not always observed

in natural enriched environments. In other words, the desta-

bilization effect induced by eutrophication, namely, the

enrichment of the environment with nutrients, is somehow

canceled in natural ecosystems. Many studies have attempted

to clarify mechanisms for stabilizing the population dynam-

ics in enriched environments; see, e.g., Refs. 3 and 4 and

references therein.

The investigation reported in this paper is motivated by

a study of Kuwamura and Chiba5 who explored a mathemati-

cal framework supporting a stabilizing mechanism in an

enriched environment. The key idea is to consider the differ-

entiation of the predator into active and dormant states. As

indicated by a number of studies, dormancy of populations

plays an important role in various biological studies.6–9

According to Gyllstr€om and Hansson,7 in comfortable envi-

ronments, zooplankton produces mainly subitaneous eggs.

However, fertilized eggs (resting eggs, dormancy state) may

be produced in order to escape periods of harsh environmen-

tal conditions. Experiments show10 that the amplitude of

prey-predator cycles of Daphnia and its algal prey in micro-

cosms increases when a portion of ephippia-producing

females is replaced by asexually reproducing gravid females.

This suggests that the dormancy of predators may stabilize

the population dynamics of Daphnia and its algal prey at

high nutrient levels.

Under suitable conditions, Kuwamura and Chiba5 found

that the dormancy of predators induces mixed-mode
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oscillations and chaos in the population dynamics of their

prey-predator model. Using the theory of fast-slow systems,

they argued that mixed-mode oscillations and chaos bifur-

cate from a coexisting equilibrium. These results are of inter-

est because they may help to find experimental conditions

supporting chaotic population dynamics in a simple

phytoplankton-zooplankton (-resting eggs) community in a

microcosm with a short duration.

The present paper corroborates the findings of Kuwamura

and Chiba5 and reports the discovery of a number of novel

and intricate behaviors supported by the model. As shown in

Fig. 1 (discussed below), we observe remarkably abundant

nonchaos-mediated cascades of mixed-mode oscillations in

the prey-predator model with dormancy. Mixed-mode oscilla-

tions exist in two distinct flavors with signatures which make

them easy to distinguish:11 Nonchaos-mediated mixed-mode

oscillations display spike-adding sequences, while the more

familiar chaos-mediated cascades involve spikes-doubling

sequences. In contrast to the standard chaos-mediated cas-

cades, the elusive nonchaos-mediated cascades were discov-

ered quite recently and at present are known only for a

handful of situations, namely, for an enzyme reaction,11,12 for

familiar models of oscillators,13,14 and for a centrifugal fly-

wheel governor system.15 Thus, the observation of nonchaos-

mediated cascades in the rather different mathematical context

of a biological model adds one more example to the list

above.

The model considered here shares a sigmoidal function

and some similarities with situations known to lead to very

rich dynamics.16,17 However, it also contain contributions

from quite different terms in the equations of motion, some-

thing of interest for our ongoing quest to classify complexity

phases in continuous-time dynamical systems.18,19 Thus, a

closer investigation of the model seems warranted and also

motivates the present investigation. Before starting, recall

that so far there are no theoretical methods for locating

stability phases corresponding to motions of arbitrary period-

icity, going beyond time-honored fixed-point analysis.

Therefore, the investigation of complicated oscillatory

modes is necessarily of a numerical nature, something feasi-

ble nowadays, thanks to the availability of clusters of fast

processors and large memories.

II. PREY-PREDATOR MODEL WITH PREDATOR
DORMANCY

The model of dormancy effects in the prey-predator

population dynamics studied here is defined by a set of three

coupled ordinary differential equations3,5

dp

dt
¼ r 1� p

k

� �
p� f ðpÞz; (1)

dz

dt
¼ k1lðpÞf ðpÞzþ aw� d1z; (2)

dw

dt
¼ � k2 1� lðpÞð Þf ðpÞz� aw� d2w½ �: (3)

Here, p and z denote population densities of prey and pred-

ators, respectively, and w is the population density of

predators with a dormancy state (resting eggs). Parameters

r and k correspond to the intrinsic growth rate and to the

carrying capacity of prey, respectively. The function f(p)

represents a positive strictly monotone increasing bounded

function, taken to be a Holling type II functional response,

namely,

f ðpÞ ¼ bp=ðcþ pÞ; (4)

where b and c represent the maximum foraging rate and the

half saturation constant, respectively. Here, � is a small time-

scale separation parameter used to control the speed in the

system,5 while parameters k1¼ e/m1 and k2¼ e/m2 denote

the growth rates of predators in the active and dormant

FIG. 1. Three complementary representations of stability: (a) Standard Lyapunov diagram, (b) Diagram displaying the continuous variation of the period, and

(c) Isospike diagram, colors indicating the number of spikes per period of periodic oscillations of p. In (b) and (c), non-periodic oscillations (chaos) are repre-

sented in black. The information content grows from left to right. Nonchaos-mediated cascades of mixed-mode oscillations are discernible on the leftmost

region in (c). The several labels coincide with similar ones shown in Figs. 2, 4, and 5 and are discussed in the text. Each individual panel displays the analysis

of a mesh formed by 600� 600 equally spaced parameter points. Here �¼ 0.2.
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states, respectively, that have the following meanings: a

predator transforms the food f(p) to reproduction energy with

efficiency e, which is distributed to subitaneous and resting

eggs with ratios l(p) and 1 –l(p), respectively. As usual, it is

given by a sigmoidal function,5,16 in the present case by

lðpÞ ¼ 1

2
tanh

p� g
r

� �
þ 1

� �
; (5)

where g and r denote the switching level and the sharpness

of the switching effect, respectively. This function implies

that predators produce more resting eggs than subitaneous

eggs when the prey density decreases below a certain level

g. Parameters d1 and d2 denote the mortality rates of the

active and dormant predators, respectively, while a is the

hatching rate, i.e., resting eggs have a dormancy period with

1/a on average. The model above is an extension of a prey-

predator interaction-diffusion system based on the Bazykin

model, known as the MacArthur-Rosenzweig model with

intraspecific interaction (density-dependent inhibition)

among predators, to which the effect of predator dormancy is

incorporated. For details, see Ref. 20.

Basically, Kuwamura and Chiba5 considered two differ-

ent situations of the model, �¼ 1 and �¼ 0.2, and studied

how the bifurcation structure changes as a function k, the

carrying capacity, and with variations of b and d1. Unless

stated otherwise, the default parameter values used here are

the following:5

r¼0:5; a¼0:02; c¼2; r¼0:1; k1¼0:6;
b¼2; g¼1; d1¼0:2; d2¼0:0001; k2¼0:12:

Stability diagrams were constructed by integrating

numerically Eqs. (1)–(3) using a standard fourth-order

Runge-Kutta method with fixed time-step h¼ 0.01.

Integrations were performed horizontally, from left to right,

starting from an arbitrary chosen initial condition, (p, z, w)

¼ (0.6, 0.15, 1.5), and proceeding by “following the

attractor,”17 namely, by using the values stored in the com-

puter buffers as initial conditions when incrementing param-

eters infinitesimally. The first 0.6� 106 integration steps

were disregarded as a transient time needed to come close to

the attractor, with an additional of 12� 106 steps used to

compute the Lyapunov spectrum. To find the number of

peaks per period, subsequently to the computation of

Lyapunov exponents, integrations were continued for

12� 106 additional time-steps, recording up to 800 extrema

(maxima and minima) of the three variables and, from the

recorded extrema, determining whether pulses repeated or

not, and the number of spikes per period.

FIG. 2. Nonchaos-mediated cascades of mixed-mode oscillations, illustrated by sequences of domains not separated by chaos (shown in black), as a function

of the maximum foraging rate b and the carrying capacity k. Panels (a)–(c) represent the number of spikes per period as measured for p, z, and w, respectively.

The boxes in panels (a)–(c) are shown magnified in panels (d)–(f). The points marked in panels (a) and (d) are the same shown with more detail in Fig. 4, which

is a magnification of panel (d). Bifurcations diagrams along the pair of lines in (d) are shown in Fig. 3. Here � ¼ 0:2. Each individual panel displays the analy-

sis of a mesh formed by 600� 600 equally spaced parameter points.

053118-3 Freire, Gallas, and Gallas Chaos 28, 053118 (2018)



III. RESULTS

The model described by Eqs. (1)–(3) contains twelve

tunable parameters. This means that 66 distinct two-

dimensional diagrams are required to represent all possible

parameter combinations into stability diagrams. Below, we

report a subset containing 29 of these diagrams, covering a

considerable portion of the control parameter space. The

generation of large sets of stability diagrams involves exten-

sive computations. As far as we know, the present paper

reports the largest number of stability diagrams describing

complex oscillatory and chaotic phases for a dynamical sys-

tem. Our stability diagrams are centered around and greatly

expand the results obtained previously by Kuwamura and

Chiba.5 As remarked by them, the chosen parameter values

are not inconsistent with experimental results and can be

considered as a reference to study the qualitative properties

of the population dynamics of phytoplankton-zooplankton

communities under the model in Eqs. (1)–(3), although they

do not correspond to one identical species.

A. Stability diagrams

Figure 1 illustrates the three complementary stability

diagrams obtained. From left to right, the diagrams display

the familiar Lyapunov exponents, the period of the oscilla-

tions, and the number of spikes contained in each period.

This latter diagram, called isospike diagrams, uses a palette

of 17 colors as indicated by the colorbars to display the num-

ber of spikes per period of the stable oscillations. Patterns

with more than 17 peaks are plotted by recycling the 17 basic

colors modulo 17. Black represents “chaos” (i.e., lack of

numerically detectable periodicity), while white and orange

denote non-zero and zero amplitude fixed-points (non-oscil-

latory solutions), respectively. These conventions are valid

for all other stability diagrams reported in this paper. All

three panels composing Fig. 1 provide similar dichotomic

separation of parameter values leading to periodic oscilla-

tions and to chaos. But the information content of the three

diagrams increases from left to right, with the isospike dia-

grams having the greatest information content.

In Fig. 1(b), periods greater than 2000 were represented

using the rightmost color in the colorbar. This threshold for

the period is necessary in order to avoid obtaining structure-

less diagrams, since the maximum periods are of the order of

30 000 and do not produce nice diagrams if not limited. For

reference, we mention that from the 360 000 points in Fig.

1(b), some 4000 points have periods larger than the threshold

2000 used in the figure. This corresponds to about 1% of the

total number of points computed, and about 2% of the

parameter points leading to periodic solutions. Below, we

use isospike diagrams to characterize the stable oscillations

in several sections of the control parameter space.

B. Nonchaos-mediated cascades of mixed-mode
oscillations

Figure 2 shows with greater detail typical stability dia-

grams of the prey-predator system with dormancy [Eqs.

(1)–(3)]. The three diagrams in the top row in Fig. 2 display

from left to right the number of spikes as observed by fol-

lowing the temporal evolution of the three variables, p, z,

and w, respectively. The bottom row shows magnifications

of the regions inside the yellow boxes seen on the top panels.

Figure 2 shows a number of interesting facts. The three

panels show the precise location where the number of spikes

changes for every variable. Oscillations in p and z display a

much larger variation of their number of spikes than the

oscillations of w which display one spike over extended

intervals when b increases. The vertical white stripes seen on

the left of the panels show that, independently of b, the maxi-

mum foraging rate, the fixed-point is not affected by the car-

rying capacity k. There is a dynamical threshold for the

effects of k to start to be noticed in the system. Furthermore,

the onset of chaotic oscillations occurs only for specific

ranges of b and k. In particular, the onset occurs for consider-

ably larger values of k when b decreases.

FIG. 3. Plots of pmax, the local maxima of p, contrasting the rather distinct bifurcation diagrams underlying (a) nonchaos-mediated mixed-mode oscillations,

and (b) the familiar chaos-mediated cascade. Panel (a) was recorded along the black line in Fig. 2(d), while (b) was recorded along the white line in the same

figure. Nonchaos-mediated cascades display spike-adding sequences, while chaos-mediated cascades show spike-doubling.

TABLE I. Coordinates (k, b), oscillation period, and number of peaks per

period for the twelve p oscillations shown in Fig. 4.

k b Period Peaks k b Period Peaks

a 5.9 22.0 253.02 3 a0 8.4 24.3 555.07 6

b 8 17.6 264.54 4 b0 11 18.9 570.85 8

c 10 15.3 280.71 5 c0 13.2 15.9 592.3 10

d 12 13.5 294.14 6 d0 15.9 14.0 619.96 12

e 14.3 12.4 311.59 7 e0 18.3 12.72 649.71 14

f 16.4 11.5 327.54 8 f0 21 11.77 681.35 16
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Figure 3 shows a comparison between two cascades of

mixed-mode oscillations found in Eqs. (1)–(3), and recorded

along the parallel lines seen in Fig. 2(d) and defined by the

equations

b ¼ �0:483k þ 20:483 and b ¼ �0:483k þ 26:035: (6)

The diagrams were obtained by starting from (p, z, w)¼ (0.6,

0.15, 1.5) at the lowest value of k and proceeding by follow-

ing the attractor until the highest k value. Figure 3(a) illus-

trates the new cascade of nonchaos-mediated mixed mode

oscillations reported in this paper, while Fig. 3(b) shows an

example of the chaos-mediated cascade found by Kuwamura

and Chiba.5 Both cascades look very different and reflect the

distinct self-organization of oscillations seen in Fig. 2. Both

cascades exist over a relatively wide range of control param-

eters and, over limited intervals, may be even observed while

varying just a single parameter, b, while keeping k fixed.

Comparing Figs. 2(d) and 3(b), it is possible to recog-

nize the existence of multistability: For instance, the smallest

values of k along the white line seen in Fig. 2(d) show the

existence of period-3 solutions, while the leftmost end of

Fig. 3(b) displays chaos and no trace of period-3. Recall that,

when computing stability diagrams by “following the

attractor,”17 the initial conditions are pre-defined only at the

start of the computations. When parameters are incremented,

one then proceeds by “recycling” the conditions stored in the

computer buffer, reached at the end of a previous scan of

parameters. Thus, stability diagrams keep record of the exact

path followed for their determination and, in particular, may

show slight differences as the aforementioned ones.

From Fig. 2(d), it is possible to recognize that the num-

ber of spikes increases by one as k grows along the black

line. So, a natural question to ask is what exactly happens to

the waveforms as they get more and more spikes continu-

ously added to them. Figure 4 provides an answer. On the

top panel of this figure, one sees two sequences of points.

The leftmost sequence, labeled by unprimed letters, corre-

sponds to stability regions characterized by “primitive” num-

ber of spikes, while points on the rightmost sequence,

labeled with primed letters, lie inside domains where the

number of spikes, and not the period, has doubled. The cor-

responding waveforms for every point in both sequences are

shown under the stability diagram, while their coordinates,

period, and number of spikes of their waveforms are col-

lected in Table I. In this table, note that although the number

FIG. 4. Typical p-waveforms along the nonchaos-mediated mixed-mode oscillation sequences indicated by the dots. Both sequences show cascades of spike

additions and spike doublings. Note the conspicuous presence of a large domain of chaos-free oscillations.13 Here, � ¼ 0:2. Evolutions start from the arbitrary

initial condition ðp; z;wÞ ¼ ð0:6; 0:15; 1:5Þ. Scales on the bottom row apply to all similar panels.
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of spikes doubles, the corresponding periods vary continu-

ously, being not necessarily doubled. This lack of “period

doubling” is a generic characteristic of continuous-time

dynamical systems because the period varies continuously

with parameters.

A conspicuous feature of Fig. 4 is the presence of a

large region of oscillations whose wave patterns evolve

continuously but which do not display chaotic oscillations.

In fact, in this figure, parameters leading to chaotic oscilla-

tions are by far less abundant than the ones leading to stable

periodic oscillations. Wide domains of chaos-free oscilla-

tions were recently observed in the low-frequency limit of

driven oscillators.13 But here we find the same phenomena

to occur for an autonomous system, i.e., in the absence of

any external drive acting on the system. Similar wide

chaos-free regions may be also seen in many stability dia-

grams reported below.

Figure 5 presents the result of an experiment designed to

illustrate (i) the presence of multistability as observed in

Figs. 2(d) and 3(b), i.e., coexistence of more than one stable

oscillation for a given set of control parameters,10 and (ii)

the shape, size, and structure of the boundaries of the basins

of attraction for the oscillations supported by the prey-

predator model. The panels in the top row of Fig. 5 are simi-

lar to the ones in Fig. 2(d) but were obtained by changing the

way of scanning parameters, as described in the caption of

the figure. Although changes are relatively small, they can

be significant in specific regions. Thin prolongations of sta-

bility phases exist abundantly in the diagrams, but larger

effects are noticeable in specific regions where chaotic oscil-

lations appear, namely, in the regions similar to the ones

containing the labels m, n, and o. The panels in the bottom

row of Fig. 5 show that slight parameter changes can induce

changes over quite significant regions of phase space. The

basin boundaries are not fractal and the relative volume of

the initial conditions leading to the coexisting attractors is

comparatively similar. The basin structure does not seem to

be significantly affected by changes of parameters. Of

course, these remarks refer to the very restricted parameter

region investigated. A general description of the basin struc-

tures remains an interesting open problem.

Figure 6 shows a remarkably complex “braided” self-

organization of mixed-mode oscillations discovered for

higher values of the carrying capacity k in the k� b and

k� d2 control planes. In this region of both control parame-

ter space cuts, one finds that the relatively regular sequen-

ces of nonchaos-mediated mixed-mode oscillations (seen in

upper and lower portions of the panels shown in Fig. 6) are

interrupted by a pair of stripes of chaos, represented in

black in the diagrams. Between the stripes of chaos, we find

FIG. 5. Multistability in cascades of mixed-mode oscillations. Top row: stability diagrams obtained by: (a) following the attractor from left to right; (b) starting

all integrations from a fix initial condition ðp; z;wÞ ¼ ð0:6; 0:15; 1:5Þ; (c) Following the attractor from bottom to top. Bottom panels (d)–(f): Basins of attraction

for w¼ 1.5 corroborating multi-stability in the blue-white points marked in panel (a)–(c) with coordinates m ¼ ð9:5; 19:8Þ; n ¼ ð11; 19:8Þ and o ¼ ð13; 19:8Þ.
Parameter resolution of individual panels: (a)–(c) 600� 600, (d)–(f) 200� 200 parameter points. All panels refer to spikes of p.
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FIG. 6. The complex braided organization of mixed-mode oscillations, embedded between two stripes of chaos (in black), observed at higher values of the car-

rying capacity k for two cuts: k� b and k � d2. Panels on the left, middle, and right columns were obtained by counting spikes per period of p, z, and w, respec-

tively. Details of the oscillations in panels (a) are given in Fig. 7 and Table II. Here, � ¼ 0:2.

FIG. 7. Top panel: Magnification of Fig. 6(a) illustrating details of the rather complex braided organization found at higher values of the carrying capacity.

Numbers indicate the number of spikes per period of the self-similar phases. The four bottom panels show how the waveform and period T of p pulses change

when moving clockwise from points a! b;! c;! d, defined in Table II. Here, � ¼ 0:2. Evolutions start from the arbitrary point ðp; z;wÞ ¼ ð0:6; 0:15; 1:5Þ.
Points u and r mark the parameters whose attractors are shown in Figs. 8(b) and 8(c).
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a braided sequence of domains arising from oscillations

with a relatively high number of spikes per period. The

complexity of the stability diagrams in Fig. 6 is best illus-

trated graphically than described with words.

The organization of oscillations between the stripes of

chaos in Fig. 6(a) is magnified and illustrated in more detail

in Fig. 7. In this figure, the phase diagram in the top row con-

tains points labeled by letters. It also contains numbers inside

FIG. 9. Wide mosaics illustrating that nonchaos-mediated and chaos-mediated mixed-mode oscillations are also abundant in six additional control parameter

planes, obtained by counting spikes per period of p. Here, b¼ 7. Each panel displays the analysis of 600� 600 parameter points. Under magnification, panel

(e) contains hubs and spirals as described elsewhere.25

TABLE II. Coordinates (k, b), period T, and number of spikes per period of p oscillations labeled inside the braided phases in Fig. 7. Here, � ¼ 0:2.

k b Period Peaks k b Period Peaks k b Period Peaks

a 44.2 6.286 1037.04 38 a0 43.9 6.2812 1073.46 38

b 45.7 6.2832 1044.94 38 e 36.7 6.292 994.9 36 e0 36.3 6.287 1034.88 36

c 47.5 6.2796 1074.49 38 f 40.2 6.289 1014.93 37 f0 39.8 6.284 1053.5 37

d 45.4 6.2786 1080.14 38 g 46.7 6.2825 1050.96 39 g0 46 6.2783 1083.58 39

h 51 6.28 1070.72 40 h0 50.1 6.2759 1101.41 40

FIG. 8. (a) The “witch hat” surface corresponding to the attractor labeled a in Fig. 7, with 38 spikes per period. All attractors in Fig. 7 produce similar hats.

(b), (c) Chaotic witch hats for parameter values close to those in (a), located at points labeled u and r in the top panel in Fig. 7. In all cases, note that the spiral-

ing takes place in the space, not in a plane as it typically happens in Shilnikov’s homoclinic scenario.
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the upper and lower cascades of stability islands. Such num-

bers correspond to the number of spikes of the oscillations

characteristic of each island. At about the center of the phase

diagram, one sees four points labeled a, b, c, and d, all of

them lying inside the same oscillatory phase. As shown in

the four panels in the bottom row of Fig. 7, such points are

all characterized by trains of periodic oscillations containing

38 spikes per period and, because 38 mod 17¼ 4, are repre-

sented with the color corresponding to 4 in the colorbar.

From the four panels in Fig. 7, it is also possible to see that

the period T of the oscillations increases clockwise, from

point a to point d, inside the stability islands. The coordi-

nates and characteristics for all points considered in Fig. 7

are given in Table II.

Figure 7 shows the time-evolution of the p variable. The

other two variables show similar characteristics and, therefore,

were not presented. The information recorded in Table II

allows the time-evolution of the waveforms for all three varia-

bles to be easily recovered, if needed. An interesting point,

however, is to clarify the nature of the reinjection loop respon-

sible for starting every train of pulses shown in Fig. 7. As it is

known, an important class of reinjection loops is associated

with homoclinic bifurcations of a saddle-focus equilibrium

state. In this case, the oscillatory part of the time-evolution

corresponds to spiralling occurring essentially on a plane,

with the reinjection happening perpendicular to it (see, e.g.,

Fig. 4 of Ref. 21). Here, however, the spiralling occurs not on

a plane but along a conical surface, as illustrated in Fig. 8. As

seen from the figure, the spiralling occurs for both periodic

and for chaotic orbits. A close inspection of Fig. 8(a) reveals

that the pair of spikes which appears between the pulse trains

visible in Fig. 7 are responsible for a small loop that exists on

the top of the cone in Fig. 8. We conjecture that for other

operation regimes of the model, it should be possible to

observe more complicated configurations in this region. We

have not attempted to locate them since this requires investing

considerable additional computer time.

So far, we discussed the properties of nonchaos-mediated

mixed-mode oscillations observed on the k� b and k� d2

control plane of the model. Is it possible to observe such oscil-

lations in other control planes? Figure 9 shows that it is not

only possible to find them in other control planes but, in addi-

tion, that they exist over relatively wider parameter windows.

Figures 9(a) and 9(b) display a relatively similar structure in

the range 1 � k � 30, despite the fact that the ranges of e and

a are not the same. Figures 9(c), 9(d), and 9(f) seem to have

similar topologies: A common feature is that their upper left

corner is white (non-zero amplitude fixed points), meaning

that complicated oscillations arise there after Hopf bifurca-

tions. Figure 9(e) displays an apparently distinct structure.

However, a magnification of the interval 0 � k2 � 1 reveals a

structure resembling the one in Fig. 4. Noteworthy in all these

figures is the presence of extended regions where chaos (rep-

resented in black) is totally absent. Wide regions of chaos-free

oscillations were recently reported for a driven oscillator.

Here, however, such chaos-free zones are observed for an

undriven, i.e., autonomous, oscillator.

C. Impact of dormancy

The predator dormancy is controlled by the sigmoidal

switching function l(p), defined in Eq. (5). Such a func-

tion contains two parameters, g and r, representing the

switching level and the sharpness of the switching effect,

respectively. Figure 10 gives a first idea of the complexity

arising when tuning g and k, the carrying capacity. Its

three panels record the distribution of the number of

spikes per period as a function of the three variables of the

model, namely p, z, and w, as indicated in the figure cap-

tion. Figures 10(a) and 10(b) show the systematic unfold-

ing of oscillations undergoing progressions of peak

additions.12 In contrast, Fig. 10(c) shows that counting

spikes in the variable w result in a much more complicated

mosaic of stability phases. The mechanism underlying

these complex subdivisions of the control parameter space

remains to be determined.

To assess the impact of g and r on the dynamics, we

investigated several additional two-parameter cuts centered

FIG. 10. Stability phases in the k � g plane classified according to the number of peaks of the periodic oscillations in p, z, and w, from left to right, respec-

tively. While the two leftmost panels display relatively similar phases, the rightmost panel shows a rather intricate mosaic of phases. Note the conspicuous hor-

izontal “shear” along g ’ 1:12 at the bottom of the center panel. The mechanism underlying the complicated changes in the number of peaks in these and in

the next figures is not known. Here, b¼ 7.
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around the values considered originally by Kuwamura and

Chiba.5 For selected pairs of parameter values, Figs. 11 and

12 present stability diagrams obtained by counting peaks of

p, z, and w as in Fig. 10, but arranging the triplet of panels

vertically: the top row shows the panels for the p variable,

the panels in the second row for z, and the third row for w.

The same organization was used for the triplets of panels in

the three rows at the bottom of the figures.

The leftmost triplet of panels in the upper part of Fig. 11

shows the g� r control plane. From them, one recognizes the

central blue stripe, corresponding to tame oscillations having a

single peak per period, that dominates more than one third of

FIG. 11. Stability diagrams as a function of g and ten control parameters. The vertical triplets illustrate stability phases obtained by counting peaks of p, z, and

w, from top to bottom, respectively. Note the complex organization of the periodic phases and the relative absence of chaos in all diagrams. White denotes

non-zero amplitude fixed points (non-oscillating solutions.) Here, b¼ 7 and k¼ 15.
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the figure. In contrast, complex oscillatory phases lie on both

sides of this central stripe. To the left of the central stripe, one

finds a wide phase resulting from chaotic oscillations, while to

the right there is no chaos. In Fig. 11, we collected diagrams

that resemble somewhat the organization just described.

Clearly, the complicated organization of oscillatory phases

makes it hard to find unifying themes covering all panels.

From a dynamical point of view, the predator-prey

model of Eqs. (1)–(3) is very appealing because it involve a

triplet of equations that scramble the three variables in a

FIG. 12. Stability diagrams as a function of r and ten control parameters, with vertical triplets illustrating phases obtained by counting peaks of p, z, and w,

from top to bottom, respectively. Note the complex organization of the periodic phases. in all diagrams. White denotes non-zero amplitude fixed points (non-

oscillating solutions.) Here, b¼ 7 and k¼ 15.
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unique way. For instance, consider the generic form of a dis-

sipative oscillator22

€x þ a _x ¼ F; _F ¼ f ðxÞ; (7)

where x is the independent variable, a is the friction, and f(x)

is a nonlinear function of x which may depend on one or

more parameters. The above equation may be equivalently

written as a flow system of three equations, namely

_x ¼ y; (8)

_y ¼ z; (9)

_z ¼ �a z� yþ f ðxÞ: (10)

For quite a number of f(x), this equation is known for

producing mathematically intricate dynamics as reported

continuously during more than three decades, e.g., by

Glendinning.23 A very recent result concerning the flow

above, involving perhaps the simplest form of a system gov-

erned by Eqs. (8)–(10), is the single op-amp-based jerk cir-

cuit.24 Comparing Eqs. (8)–(10) with Eqs. (1)–(3), it seems

plausible to expect the nonlinearities present in the latter to

complicate the resulting stability diagrams. Regrettably,

there are yet no theoretical tools allowing one to anticipate

features of stability diagrams for sets of differential equa-

tions. Fortunately, powerful computer clusters allow one to

study systematically the auto-organization of stability.

Figure 12 shows the dependence on r of several control

planes, in the same vein as the g dependence is presented in

Fig. 11. The panels were grouped so that “similar” diagrams

are displayed close to each other. Generically, the overall

message from Figs. 11 and 12 is that changes in g and r result

in rather distinct stability phases. Clearly, it is not easy to

summarize the global dynamical effect of changing parame-

ters, because every change of parameters results in significant

changes on the stability charts. With hindsight, the aforemen-

tioned statement that the chosen parameter values are not

inconsistent with experimental results5 seems relatively innoc-

uous because a plethora of other choices of parameters values

also lead to similarly complex dynamics. In other words, there

is no short supply of complicated dynamics supported by the

model in Eqs. (1)–(3). The dynamical richness of the model

certainly deserves further study.

The plane k� k2 in Fig. 9(e) as well as planes g� k2 in

Fig. 11 and k2� r in Fig. 12 seems to contain a profusion of

hubs and spirals similar to the ones first observed in a simple

resistive circuit.25 Furthermore, among others, the planes

a� r and k2� r clearly display the arborescent patterns first

described for a three-cell population model of cancer (see

Figs. 6 and 7 in Ref. 26). The detailed exploration of all

these rich scenarios demands a considerable additional

investment of computer time and will not be attempted here.

IV. CONCLUSIONS

The impact of predator dormancy on the population

dynamics of phytoplankton-zooplankton in freshwater eco-

systems was investigated using a simple model previously

considered by Kuwamura and Chiba.5 Predator dormancy

was linked to nonchaos-mediated sequences of oscillations, a

novel and elusive type of mixed-mode oscillations. As the

carrying capacity increases, nonchaos-mediated sequences

were found to emerge well before the onset of chaos in the

system, i.e., before the onset of the more familiar chaos-

mediated sequences. From a dynamical point of view, the

observation of nonchaos-mediated sequences in the system

is of interest because such sequences have been reported

only recently and, at present time, are known to exist only in

a few systems.11–15 At present, the few reports of nonchaos-

mediated sequences allow no definitive comparison concern-

ing their origin and unfolding. As seen in Fig. 9 when �! 0,

nonchaos-mediated sequences display intricate accumulation

limits, which remain to be investigated, in particular to

understand the interplay between the fast and slow time-

scales present in the system. In addition, as seen in Figs. 6, 7,

and 9, stability phases emerge in control parameter space

which are self-organized quite regularly but in a morass of

ways, complicated beyond description, which are best repre-

sented by graphical means rather than by words.

In the present paper, we considered 29 out of the 66 pos-

sible two-dimensional stability sections of the multidimen-

sional control parameter space. We see no reason for

nonchaos-mediated cascades of oscillations not to exist also

for the parameter combinations that were not investigated

here. However, a full exploration of all possible combinations

is a task demanding considerable additional computations and

must be postponed. Our present computations extend consid-

erable knowledge about the population dynamics of

phytoplankton-zooplankton in fresh water ecosystems using a

simple model including dormancy. The stability diagrams

reported here represent by far the most detailed exploration of

the parameter space of a dynamical system depending on

many parameters. The discussion of the phenomena recorded

in these stability diagrams is necessarily descriptive due to the

lack of a mathematical framework to address motions with

higher periodicities and chaotic oscillations. While some of

the parameter spaces considered are clearly not easy to access

experimentally, they nevertheless display a complicated self-

organization whose structure is rather novel, particularly since

they arise in a system not acted by any external drive. It would

be of interest to discover the mechanisms underlying such

self-organization. Finally, we mention that it would be also

interesting to detect the fine structure of the parameter spaces

in ecology in real experiments. A nice long-term experiment

reporting evidence of chaos in a plankton community27 pro-

vides some hope of the feasibility of such detection in the

dynamics of zoo-phytoplankton.
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