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We investigate the distribution of mixed-mode oscillations in the control parameter space

for two paradigmatic chemical models: a three-variable fourteen-parameter model of the

Belousov–Zhabotinsky reaction and a three-variable four-parameter autocatalator. For both

systems, several high-resolution phase diagrams show that the number of spikes of their

mixed-mode oscillations emerges consistently organized in a surprising and unexpected

symmetrical way, forming Stern–Brocot trees. The Stern–Brocot tree is more general and

contains the Farey tree as a subtree. We conjecture the Stern–Brocot hierarchical organization

to be the archetypal skeleton underlying several systems displaying mixed-mode oscillations.

1. Introduction

Mixed-mode oscillations (MMOs) are complex oscillatory

patterns consisting of trains of small amplitude oscillations

followed by large excursions of relaxation type. During the last

30 years or so, MMOs were observed profusely in experiments

and models of prototypic chemical systems.1–24 In the

literature, MMOs were also called alternating periodic-chaotic

sequences.14,15 For a recent survey about the properties,

prospection and use of MMOs in several fields see ref. 25.

Although MMOs were already investigated abundantly,

they were analyzed most frequently by considering the

dynamics observed along a single or a few scattered one-

parameter sections of parameter spaces that are normally of

very high dimensions. Sometimes, a few bifurcation curves

were obtained using numerical continuation techniques. It

seems then natural to ask if restricted sections of the

high-dimensional parameter spaces are sufficient for an

unambiguous characterization of MMO cascades. Here we

show that the periodicity of MMO cascades still harbors

unsuspected and far-reaching organizational features.

The aim of this paper is to present a detailed investigation of

the unfolding of MMO cascades as observed when two

parameters are tuned finely in the control space of two

representative examples of chemical dynamics, namely the

Belousov–Zhabotinsky reaction4,5 and in one of the

commonly exploited model schemes based on isothermal

autocatalysis.6,7 This is done by numerically computing

high-resolution planar phase diagrams for these systems.

The main result reported here is the discovery of a

surprisingly new hierarchical organization for MMOs in

parameter space of both examples mentioned. In contrast to

what is presently known, in both models we find MMOs to

emerge organized in perfect agreement with the so-called

Stern–Brocot tree,26,27 not according to the familiar Farey

tree.28 The Stern–Brocot trees are more general than Farey

trees and include them as subtrees.29,30 Stern–Brocot trees may

be recognized contemplating the unfolding of oscillations in

several two-parameter sections of the control parameter space.

Before proceeding, we remark that we also found Stern–

Brocot trees in other popular models of MMOs. Here,

however, we wish to focus on the aforementioned pair of

representative models, namely a realistic Belousov–Zhabotinsky

proxy and the autocatalator.

Our motivation for this work arises from the fact that the

period-adding sequences commonly found in MMOs systems

display a striking resemblance with aspects of sequences

observed recently in rather distinct scenarios connected with

certain ‘‘periodicity hubs’’.31–34 When projected in planar

phase diagrams, multidimensional hub manifolds produce

remarkable networks of points responsible for organizing very

regularly the dynamics around quite wide portions of the

parameter space.34 For us, systems displaying MMOs are

particularly attractive to investigate and probe details

associated with the nature of certain intricate reinjection

mechanisms, homoclinic or not, causing periodicity hubs33,34

and of reinjections arising in multiple-timescale systems.

Such mechanisms need to be investigated because they play

important roles in the generation of a radically distinct class of

stability spirals than those presently known, a class for which

not even a local adequate mathematical framework is available

at present.35

In the next section we review briefly a realistic model of the

Belousov–Zhabotinsky reaction and introduce what we call

‘‘isospike diagrams’’ illustrating how the number of spikes of
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periodic oscillations auto-organizes in five distinct sections of

their control parameter space. Section 3 describes the

Stern–Brocot organization arguing that this is the hierarchical

organization of the MMOs in the Belousov–Zhabotinsky

reaction. Section 4 presents results for the autocatalator model

providing independent corroboration of the Stern–Brocot

organization. Although isospike diagrams of both models

display the same hierarchical Stern–Brocot structure, they

are easier to be recognized in the autocatalator, in the

sense that autocatalator requires fewer phase diagrams

to display the organization. Finally, Section 5 summarizes

our conclusions.

2. Isospike diagrams for a realistic BZ model

The Belousov–Zhabotinsky reaction is a classical dynamical

system for which several mathematical models have been

developed over the years with an ever increasing degree of

reality.16–20 Here, we consider a model suggested by Györgyi

and Field4 that contains 14 parameters that may be tuned to

produce rich dynamical scenarios.5 It is governed by three

differential equations:

dx

dt
¼ T0 �k1HY0x~yþ k2AH

2 Y0

X0

~y� 2k3X0x
2

�

þ 0:5k4A
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where we abbreviated5

x � X

X0
; y � Y

Y0
; z � Z

Z0
; v � V

V0
; t � t

T0
; ð4Þ

X � [HBrO2], A � [BrO�3 ],

Y � [Br�], C � [Ce(III)] + [Ce(IV)],

Z � [Ce(IV)], H � [H+],

V � [BrMA], M � [CH2(COOH)2],

and where X0 = k2AH
2/k5, Y0 = 4X0,

Z0 ¼
CA

40M
; V0 ¼ 4

AHC

M2
; T0 ¼

1

10k2AHC
; ð5Þ

~y ¼ ak6Z0V0zv

ðk1HX0xþ k2AH2 þ kfÞY0
: ð6Þ

The quantities a and b are historical artifacts and have no

chemical significance.5 All parameters appearing in the

equations above are collected in Table 1, along with their

basic numerical values. Further details about this model are

available in the literature.4,5

Fig. 1 presents a pair of phase diagrams that we computed

for eqn (1)–(3). In both diagrams, the parameter region shown

was divided into a mesh of 1200 � 1200 equally spaced values.

For each parameter pair, we integrated eqn (1)–(3) using a

standard fourth-order Runge–Kutta algorithm with fixed

time-step h = 2 � 10�6. The first 2.5 � 106 steps were

discarded as transient. During the next 2.5 � 106 steps we

searched for the local maxima of the variable displaying the

largest number of spikes within a period, x for the BZ reaction.

The number of spikes was then plotted in what we call isospike

diagrams, with the help of colors, as indicated in the diagrams.

As it is known, the number of spikes of each independent

variable is not uniformly equal.31

Computations were always started from the lowest value

of k2 from the arbitrary initial condition (x0, z0, v0) =

(0.046, 0.898, 0.846) and continued by following the attractor,

namely, by using the values of x, z, v obtained at the end of one

integration at a given k2 to start a new calculation after

incrementing k2 infinitesimally. This is a standard way of

generating bifurcation and Lyapunov diagrams, and the

rationale behind it is that, generically, basins of attraction

do not change significantly upon slight changes of parameters,

thereby ensuring a relatively smooth unfolding of the quantity

being investigated as parameters evolve. Lyapunov exponents

were computed in a similar way, as described in ref. 5.

Fig. 1a shows an isospike diagram, discriminating with

colors parameter domains characterized by periodic

oscillations having an identical number of spikes within a

period. Such diagram is a sort of generalized isoperiodic

diagram,36–38 useful for visualizing the organization of peri-

odic phases. Fig. 1a displays the 14 lowest periods using the 14

colors indicated by the colorbar, recycling them ‘‘mod 14’’ for

higher periods. Black is used to represent parameters leading

to non-periodic oscillations, i.e. to chaos. This same scale is

used in similar figures below where, additionally, white is used

to mark fixed-points (i.e. non-oscillatory solutions).

In Fig. 1a it is possible to recognize a dense succession of

curved stripes indicating that periodic oscillations with an ever

increasing number of spikes exist symmetrically on both sides

of the green stripe (which marks parameters leading to

periodic oscillations with two spikes in a period). On both sides

of the green 2-spike phase one may recognize the unfolding of

the doubling cascade ending in chaos (black). Next comes a

large region characterized by three spikes, together with its

doubling cascade, ending once again in chaos (black).

Table 1 Numerical values of rate constants and parameters fixed in
our simulations, taken from ref. 4, in the same units

k1 = 4 � 106 k2 = 2.0
k3 = 3 � 103 k4 = 55.2
k5 = 7 � 103 K6 = 0.09
k7 = 0.23 kf = 3.9 � 10�4

A = 0.1 C = 8.33 � 10�4

H = 0.26 M = 0.25
a = 666.7 b = 0.3478
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Fig. 1b displays a Lyapunov phase diagram34,39–41 corres-

ponding to the panel shown in Fig. 1a. The emphasis in the

Lyapunov phase diagram is on enhancing the intricate and

large chaotic phase, i.e. making chaos more easily visible.

Colors denote parameters leading to chaos, i.e. positive

exponents, while darker shadings mark periodicity, as

indicated by the color bar. The color scale for the Lyapunov

exponents is linear on both sides of zero but not uniform from

negative to positive extrema. Note that although Fig. 1a and b

are obtained using two very distinct algorithms, they both

agree: the boundaries between chaotic and periodic regions

delimited by Lyapunov exponents coincide with the

boundaries obtained by counting spikes.

Fig. 1a manifests a clear structural organization of the

isospike phases and it is natural to ask about how this ordering

further develops for higher periods. The large blue phase in

Fig. 1a corresponds to 1-spike oscillations. When moving to

the left from this 1-spike phase one meets the green 2-spike

phase corresponding to a period doubling of the 1-spike

oscillations. Moving further to the left one sees that the

2-spike phase develops two distinct ‘‘armpits’’, i.e. two phases

characterized by period doubling cascades that accumulate in

a chaotic phase, represented in black in Fig. 1a [in yellow in

Fig. 1b]. The white box in Fig. 1a indicates the location of the

lower armpit of the 2-spike phase. Although each chaotic

phase contains a myriad of smaller isospike phases, the largest

periodic phases embedded in the chaotic phases of the 2-spike

armpits are a symmetric pair of 3-spike phases, as indicated by

the labels ‘‘3’’ in the figure. Each one of these 3-spike phases

develops its own symmetric pair of armpits. To see how this

multiplication process develops is difficult in the scale of

Fig. 1a. However, the structure may be recognized resorting

to several magnifications and bifurcation diagrams of specific

portions of the phase diagram (not shown here).

In this way we recognize that the general picture underlying

the hierarchical process at hand is the emergence of an infinite

cascade of armpit pairs appearing in a definite order which,

albeit strongly distorted in the figures, display a mirror

symmetry with respect to the central 2-spike green domain.

This central domain seems to organize the whole structure as

periods grow without bound.

Fig. 2 presents bifurcation diagrams showing the evolution

of the variable x (the normalized concentration X = [HBrO2])

along the three vertical lines shown in Fig. 1a. The bifurcation

diagrams contain numbers to help identify the location of

some of the major windows of periodic behavior and to

facilitate comparison with the planar windows depicted in

Fig. 1a. The bifurcation diagrams emphasize the fact that it

is very hard to grasp the hierarchical ordering of the MMOs

based solely on a few isolated diagrams.

Fig. 3 shows four additional parameter sections of the

14-dimensional parameter space of the Belousov–Zhabotinsky

reaction. As it is clear from this figure, all sections display the

same hierarchical organization found for Fig. 1a. It is

important to realize that the parameters used in all figures

here do not reflect abstract choices but, instead, are

Fig. 1 Phase diagrams for the Belousov–Zhabotinsky reaction. (a) Isospike diagram emphasizing periodic phases. Chaotic phases are shown in

black. The white box indicates the location of the lower ‘‘armpit’’ of the 2-spike phase. The three vertical lines indicate the parameters investigated

in the bifurcation diagrams shown in Fig. 2. Colors and numbers mark the number of peaks in a period of x, as indicated by the colorbar. Colors

are used ‘‘mod 14’’, i.e. we recycle the same colors for higher periods. Period-adding cascades are easily recognizable along a continuum of

one-parameter, codimension one, lines. (b) Lyapunov phase diagram emphasizing chaotic phases. Although generated in distinct ways, the

dynamical phases predicted by both diagrams agree with each other. Each panel displays results from the phase-space analysis of the dynamics for

12002 = 1.44 � 106 individual parameter points.
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parameters derived from real experiments.4 This is why our

cuts produce rather asymmetric trees. We believe to be

possible to optimize parameters so as to generate much more

symmetric parameter sections. Such search, however, is

expected to be computationally very time-consuming and will

not be pursued at this point.

In Fig. 4 we summarize schematically the first few levels of

the hierarchical organization of MMOs observed in the five

sections of the parameter space of the Belousov–Zhabotinsky

reaction, shown in Fig. 1 and 3. To emphasize the symmetry of

the hierarchical structure, in Fig. 4 we compensated shifts and

shear normally present in phase diagrams. The fine structure

of the hierarchical development of MMOs is of course rather

complex but Fig. 4 certainly captures its Leitmotiv.

3. The tree of Stern and Brocot

The correlation between the MMOs observed progressively in

parameter space is traditionally investigated by establishing a

one-to-one correspondence between these oscillations and an

ordered set of rational numbers. To do this it is usual to start

by first establishing a taxonomy for MMOs by introducing

symbols like Ls, where L and s refer, respectively, to the

number of ‘‘large’’ and ‘‘small’’ amplitude excursions recorded

in the time evolution of one of its variables.

A well-known ordering of rationals is generated by

assigning to a given pair p/q and p0/q0 of rationals an inter-

mediary ‘‘mediant’’ rational (p + p0)/(q + q0). Since the

number of spikes in a period is defined by an integer, not by

a rational number, we consider ‘‘derived trees’’ formed by

simply summing p and q of familiar trees used in number

theory to represent sequences of rationals. Fig. 5 compares the

sequences of rationals generated by Stern–Brocot29 and by

Farey28 sequences with the sum trees derived from them by

simply adding numerator and denominator of the rationals.

As it is clear from Fig. 5, the spike ordering of the MMOs in

Fig. 1a does not correspond to the one generated by the Farey

tree but it is in perfect agreement with the integers in the

Stern–Brocot sum tree. This ‘‘good’’ tree was devised inde-

pendently in 1858 by Moritz Stern26 and in 1861 by Achille

Brocot.27 Stern was a German mathematician and Brocot a

French clockmaker. The latter used this tree to design systems

of gears with a gear ratio close to some desired value by

finding a ratio of numbers near that value. The Stern–Brocot

and Farey trees are generated by the same arithmetic principle.

However, Stern–Brocot trees are more general than Farey

trees and include them as subtrees.29,30

The Stern–Brocot sequence differs from the Farey sequence

in two basic ways:29 it eventually includes all positive

rationals, not just the rationals within the interval [0,1], and

at the nth step all mediants are included, not only the ones with

denominator equal to n. The Farey sequence of order nmay be

found by an in-order traversal of the left subtree of the

Stern–Brocot tree, backtracking whenever a number with

denominator greater than n is reached. ‘‘But we had better

not discuss the Farey series any further, because the entire

Stern-Brocot tree turns out to be even more interesting.’’29

Two factors are important to identify the Stern–Brocot tree:

first, one needs to sweep finely two parameters simultaneously

and, second, the tree is made visible by the isospike diagrams

introduced here. We find the total number of spikes to

be a more reliable indicator than the standard large–small

Ls labeling and the associated ‘‘winding numbers’’

W = s/(L + s) derived from such labeling. These quantities

turn out to be rather ambiguous when tuning two parameters

on a finely spaced mesh. For instance, the attribution of the

labels 10 and 01 is ambiguous from the outset as also is the set

of multiple labels which are possible in sequences of spikes

with comparable amplitudes evolving as parameters are changed

slightly, due to difficulties in distinguishing ‘‘large’’ from

‘‘small’’. Furthermore, the Farey tree has been frequently

identified in the literature on the basis of ‘‘devil staircases’’

constructed with the aforementioned winding numbers, despite

ambiguities and despite the fact that Ls and the infinite sequence

(nL)(ns) for n = 2,3,. . . share identical winding numbers.

Farey trees have been identified in earlier work on the basis

of the analysis of a single chemical variable. It is important to

realize that although phase diagrams obtained by using just

one of the dynamical variables are easier to obtain and

Fig. 2 Bifurcation diagrams showing the evolution of x (i.e. of the

normalized concentration X = [HBrO2]) along the three vertical lines

shown in Fig. 1a. Numbers indicate the number of spikes characterizing

the windows containing them. The Belousov–Zhabotinsky model has

an accumulation of spikes close to zero as k4 increases. Bifurcations

along (a) k2 = 1.1; (b) k2 = 1.5; (c) k2 = 2.0.
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generally reliable, the final diagram might depend on the choice

of the variable. For instance, identical isospike diagrams are

obtained when counting spikes from either x(t) or z(t) in eqn (1)

and (2). The oscillations of v(t) in eqn (3) are less representative

than the ones from the former two variables. This is so because

the number of spikes of individual variables governing

dynamical systems evolves independently from each other.31

When constructing isospike diagrams, we always use one of the

variables that displays the greatest temporal variation, i.e. the

greatest number of spikes within a period. In any case,

dependencies may be eliminated by using vector quantities

defined by taking into consideration all components governing

the flow, a superfluous step for our present purposes. Be it as it

may, eventual dependencies need to be ascertained on a case-

by-case basis by studying all dynamical variables involved.

We emphasize that isospike diagrams may be used equally

well to discriminate between a Stern–Brocot and a Farey tree.

For any given system, its specific tree may be read directly

from the organization and the sequencing seen in the

computed isospike phases. Note, however, that isospike

diagrams provide no information about the relative

magnitudes or about the sequence of oscillations within a

period. Isospike diagrams work as useful complements to the

traditional tools, like, e.g., time-evolution plots and bifurca-

tion diagrams, being certainly not a substitute for any of them.

Fig. 3 Examples of Stern–Brocot trees observed in four additional sections of the 14-dimensional parameter space of the Belousov–Zhabotinsky

reaction. The relative invariance of the diagrams seems to imply the existence of a highly symmetric hyper-manifold in parameter space. White

regions represent fixed-point (non-oscillating) solutions. The white–blue boundaries are lines of Hopf bifurcations. The ‘‘fountains of chaos’’

described in ref. 5 are here identified as manifestations of the Stern–Brocot order defined in Fig. 4 and 5 below. Each panel displays results from the

phase-space analysis of the dynamics for 12002 = 1.44 � 106 individual parameter points.

Fig. 4 Schematic representation of the first stages of the hierarchical

unfolding of isospike cascades observed in MMOs. The black regions

between isospike phases represent chaotic phases of non-homogeneous

chaos,34 reached after cascades of period doubling bifurcations. The

‘‘armpits’’ of the main 2-spike phase contain a pair of 3-spike phases,

each one containing their own pair of armpits with isospike phases,

with this hierarchical organization repeating ad infinitum, showing a

mirror symmetry with respect to the central 2-spike domain. As shown

in Fig. 5 below, the sequence of periods here corresponds to that

generated by the Stern–Brocot tree.



12196 Phys. Chem. Chem. Phys., 2011, 13, 12191–12198 This journal is c the Owner Societies 2011

4. Stern–Brocot tree in the autocatalator model

To check the generality of the Stern–Brocot spike-ordering we

performed an additional experiment, investigating the order-

ing of MMOs for a paradigmatic autocatalator defined by the

equations6,7

dA

dt
¼ mðC þ kÞ � AðB2 þ 1Þ; ð7Þ

s
dB

dt
¼ AðB2 þ 1Þ � B; ð8Þ

d
dC

dt
¼ B� C; ð9Þ

where A, B, C are dimensionless concentrations, and m, k, s, d
are freely tunable control parameters.

Fig. 6 presents phase diagrams demonstrating clearly

that the hierarchical structure of MMOs for the auto-

catalator coincides with the one found earlier in Fig. 1

and 3 for the Belousov–Zhabotinsky reaction. Even the

strong ‘‘lateral compression’’ seen in both diagrams looks

identical.

Fig. 5 Top row: tree of periods obtained by summing numerator and denominator of the fractions in the Stern–Brocot and Farey trees. Bottom

row: schematic representation of the Stern–Brocot and the Farey trees. The sequence of periods derived from the Stern–Brocot tree reproduces the

hierarchy of the periodic phases in Fig. 1a and 3. The arithmetic process responsible for the growth of both trees is the same.

Fig. 6 (a) Isospike diagram for the autocatalator. (b) The corresponding Lyapunov phase diagram. These figures complement Fig. 7 of

Petrov et al.7 White spines seen in the Lyapunov diagram are continuous-time generalized loci analogous to discrete-time superstable loci.37 The

white–blue and white–black boundaries in the upper left corners are Hopf bifurcation lines. Here k = 2.5 and d = 1. Each panel displays results

obtained from the individual phase-space analysis of 12002 parameter points.
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To minimize the lateral compression and to better visualize

the unfolding of the isospike cascade, we recomputed Fig. 6a

after suitably rotating the (m,s) parameter plane by an angle

y = p/5 around the point (m0,s0) = (0.0072,0.00525) according

to the transformation37

m0 = m0 + (m � m0)cos y � (s � s0)sin y, (10)

s0 = s0 + (m � m0)sin y + (s � s0)cos y. (11)

Isospike diagrams in the rotated framework are shown in

Fig. 7 where, for simplicity, we drop primes from the

transformed coordinates. This figure allows a more detailed

view of the unfolding of the cascade, which is seen to also

follow the Stern–Brocot order.

It is clear from the several phase diagrams presented here

that the hierarchical structure found for the MMOs in the

Belousov–Zhabotinsky reaction and in the autocatalator

displays an excellent agreement. In fact, macroscopically both

hierarchical structures observed may be considered as

isomorphic to each other. A detailed report about MMOs

observed in the autocatalator is being prepared and will be

presented elsewhere.42

5. Conclusions

We performed a detailed study of the unfolding of cascades of

mixed-mode oscillations for two prototypical chemical models

by continuously recording changes in the number of spikes of

their periodic oscillations when pairs of parameters are tuned

simultaneously. In several sections of the parameter space, we

found that the number of spikes emerges organized according

to a regular tree of integers that may be easily derived from the

Stern–Brocot tree, not from the much more familiar Farey

tree. The Stern–Brocot trees are more general than Farey trees

and include them as subtrees.29,30

The arithmetic process for generating Stern–Brocot and

Farey trees is exactly the same. But the specific tree obtained

shows sensitive dependence to the initial conditions. Alone,

the arithmetic process does not discriminate Farey from

Stern–Brocot order. In fact, since the ‘‘mediant’’ arithmetics

of both trees is exactly the same, it is generally very hard to

guess the right tree underlying cascades of oscillations based

solely on isolated cuts of parameter space or on a few

bifurcation diagrams displaying a limited number of windows.

We argued that the plain use of winding numbers based on

large/small labeling might not be a reliable indicator to

Fig. 7 Top: isospike diagram displaying the Stern–Brocot organization as observed in the autocatalator after rotation in parameter space. Colors

and numbers display the number of peaks in a period of B. Some regions are too small to be identified in this scale but become visible under

magnification. Resolution: 2400 � 1200 parameter points. Bottom: enlargement of the white boxes, showing details of the Stern–Brocot tree. Each

of the three panels displays results obtained from the individual phase-space analysis of 12002 parameter points.



12198 Phys. Chem. Chem. Phys., 2011, 13, 12191–12198 This journal is c the Owner Societies 2011

discriminate Farey from Stern–Brocot order because such

labeling cannot sensibly be defined generically. Since only

the Farey tree is presently believed to have been sighted in

devil’s staircases generated by MMOs, an enticing challenge

now seems to be to sort out Stern–Brocot from Farey order in

such cascades. We remark that sequences of rational numbers

are easy to attribute to phenomena involving two distinct

frequencies. But it looks rather arbitrary to use the non-unique

concept of large/small peaks to emulate pairs of frequencies in

phenomena where they are not naturally present or not quite

justifiable.

The fact that the Stern–Brocot tree is clearly visible in so

many distinct sections of the parameter space of the Belousov–

Zhabotinsky model seems to imply the existence of an

exceptionally symmetric manifold in its parameter space, a

sort of ‘‘hyper-symmetrical onion’’ capable of displaying

identical-looking sections when cut along several distinct

directions, as exemplified by Fig. 1 and 3. The realistic

Belousov–Zhabotinsky model considered here is governed by

a set of fourteen parameters:4,5 a nice and presumably time-

consuming computational challenge now would be to try to

locate the ‘‘symmetry center’’ of such onion, if any.

Although not yet reported, we have also identified the

Stern–Brocot spike ordering to be equally present in a few

additional standard models displaying MMOs.43 Therefore, we

believe the Stern–Brocot tree to hold great significance for the

generic description of the hierarchical structure of complex oscil-

latory patterns routinely observed in chemical systems supporting

mixed-mode oscillations, as evidenced by the phase diagrams

shown above. In fact, our numerical investigations seem to

suggest the Stern–Brocot tree to emerge by far more frequently

than the nowadays so popular Farey tree: thus far we have been

unable to find evidence of Farey trees in isospike diagrams

computed for a dozen or so of the standard models known for

displaying MMOs and purportedly containing Farey trees.

In conclusion, to the abstract application of Stern in number

theory and the nice practical application devised originally by

Brocot, this paper now adds another practical use for the

Stern–Brocot tree: to describe and predict the regular and

symmetrical unfolding and multiplication of spike cascades in

mixed-mode oscillations, as indicated schematically in Fig. 4

and 5. We hope our work to motivate the experimental

verification of Stern–Brocot order of MMOs in chemical

oscillators and in other interesting systems.
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