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Computer simulations of complex spatio-temporal patterns using cellular automata may be performed in
two alternative ways, the better choice depending on the relative size between the spatial width W of
the expected patterns and their corresponding temporal period T . While the traditional timewise updating
algorithm is very efficient when W � T , the complementary spacewise algorithm wins whenever T � W .
Independently of the algorithm used, the key to obtaining exhaustive answers, not just statistical
estimates, is to have explicit knowledge of the complete sets of initial conditions that need to be individually
tested as sizes grow. This paper reports an efficient algorithm for generating complete sets (without
redundancy) of k-vectors of initial conditions allowing one to perform definitive classifications of patterns
in systems with a minimal characteristic length k, either spatial or temporal.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The simulation of complex spatio-temporal patterns using cel-
lular automata may be performed in two complementary ways: ei-
ther by applying the traditional timewise updating algorithm [1–5],
or by applying a complementary spacewise updating [6,7]. In both
cases, the critical information required to start simulations is a set
of initial conditions defining the initial state of the automaton. Even
after discounting trivial repetitions, the number of initial condi-
tions grows exponentially fast with the lattice size k. For instance,
for the simplest possible class of automata, namely for binary au-
tomata,1 an upper bound for the number nu(k) of initial conditions
that need to be explicitly investigated to find exhaustively all pos-
sible dynamical behaviors of the automaton is nu(k) = 2k . This
quantity provides simultaneously an estimate of the size of the
sampling space that needs to be probed, as well as an indication
of the computational complexity of the search that needs to be
performed.

In many applications, particularly in statistical physics, one is
interested in the dynamics at the so-called thermodynamic limit,
i.e. the limit k → ∞. The problem of investigating accurately the
thermodynamic limit is that the exponential growth of the di-
mension of the sampling space frequently prevents an exhaustive
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1 A binary automaton is one in which individual cells may assume one of two
possible values.
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search of all possible patterns supported even by the most elemen-
tary binary automata. So, instead of accurate exhaustive results, the
thermodynamic limit forces one to be content with just statistical
estimates of the asymptotic behaviors. This difficulty by no means
prevented the useful application of cellular automata to many sit-
uations of interest in several disciplines, as amply described in
several books and in the technical literature [1–5].

A totally different class of applications focuses not on the
thermodynamic limit but on the simulation of complex spatio-
temporal patterns and, with particular emphasis, on classifying
exhaustively all patterns supported by specific rules. Of great in-
terest are temporally periodic patterns like those typically present
in, say, models of crystal growth or in the so-called “gliders”, i.e.
in spatially localized or traveling structures characteristic of com-
plex “class 4” automaton rules [1,4]. Three representative examples
of gliders are shown in Fig. 1, generated by rule 20, a popular
rule among those known for their complex dynamics [8–12]. Un-
der rule 20, the state of any given site i at time t + 1 depends on
the state of the site at time t as well as on the state of its nearest
and next-nearest neighbors through the sum

Σi(t) ≡ σi−2(t) + σi−1(t) + σi(t) + σi+1(t) + σi+2(t) (1)

and is synchronously updated as follows:

σi(t + 1) =
{

1 if Σi(t) ∈ I,
0 otherwise.

(2)

For rule 20, the set I contains just two numbers, namely I = {2,4}.
Fig. 1 illustrates the asymmetry T � W frequently observed be-

tween the period T and width W of complex gliders. To quantify
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Fig. 1. Typical size asymmetries between period T and width W observed in gliders supported by rule 20. Time runs vertically downwards. Left column, from top to bottom:
(T , W ) = (4,21), (4,22), (5,37). Right column: example of a situation with (T , W ) = (38,31). The left column illustrates situations where T � W while in the right we
show the only known glider with T > W (see Table 1).

Table 1
Comparison between width and period of all known static patterns supported by the rule 20. Values taken from Wolfram [4], except for the situation marked with an
asterisk, reported in Ref. [7]. Note that only one glider has T > W .

Period T 1 2 3 4 4 5 6 6∗ 8 10 10 10 22 38
Width W 8 9 42 21 22 37 66 73∗ 45 57 61 73 28 31
W − T 7 7 39 17 18 32 60 67∗ 37 47 51 63 6 −7
how “typical” this asymmetry is, Table 1 collects T and W for all
known gliders of rule 20. With the exception of the glider marked
by an asterisk, all data is taken from a classification presented by
Wolfram [4], obtained with timewise updating. The missing glider
indicated by the asterisk was found recently during a systematic
search using the spacewise algorithm [7]. From Table 1 one sees
that for the majority of known cases one indeed has T � W , sug-
gesting spacewise updating to be the efficient algorithm to used in
these situations.

2. The two complementary methods of automata updating

In this section we outline and contrast the two complementary
methods for investigating cellular automata, namely “timewise”
and “spacewise” updating.

Consider a general binary automaton, represented by a rect-
angular matrix of indefinite size (an “indefinite sheet of squared
paper”) in the lower half-plane; each cell may contain either a 0
or a 1. Temporal evolution is recorded vertically downwards while
spatial dimension is recorded horizontally, increasing to the right.
Denote by σi(t) the state (or value) of the automaton at (spatial)
site i at time t . For the evolution rules that interest us here, the
state of any site i at time t + 1 is given by a function that depends
on the sum of the states at time t of the site i and its nearest
and next-nearest neighbors. This sum is defined by Eq. (1) and the
state of each site i is synchronously updated by Eq. (2), where I
is a suitably-defined set; for example, I = {2,4} for rule 20, while
I = {2,4,5} for rule 52, etc.

The classical timewise updating algorithm for such an automa-
ton starts with the selection of a convenient spatial dimension, say
L cells, and by the imposition of the periodic boundary condition
σi(t) = σi+L(t) for all i and all t; this amounts to defining the au-
tomaton on a cylinder whose circumference has L cells. A choice is
made for the state of the automaton at time t = 0 and the values
for t = 1, t = 2, and so on, are calculated. There are of the order of
2L/L choices for the state at t = 0: see Ref. [7] for details.

One of the questions that might be asked about such an au-
tomaton is whether there exist gliders (non-zero time-periodic
structures on an all-zero background) or (time-periodic) interfaces
(between the all-zero state to the left of a fixed site i and a non-
zero state to the right). An exhaustive implementation of the above
procedure for a given value of L and all possible choices for time
t = 0 will probably discover a number of such gliders and inter-
faces. This approach has two main problems: for L moderately
large, the number of choices for t = 0 becomes unwieldy, while the
procedure will miss structures of spatial dimension greater than L.
One might successively increase L in an attempt to compensate
for the second problem, but this just makes the first problem
worse.

Instead of the above “timewise” updating, it has proved practi-
cable to implement “spacewise” updating in the search for gliders
and interfaces, provided we first fix a temporal period k. Typi-
cally, we start on the left with σi(t) = 0 for 1 � i � 4 and for
all t; this corresponds to 4 vertical columns containing only the
value 0. We then choose an “initial vector” vk , a column vec-
tor with k entries which are, reading from the top, the values
of σ5(t) for t = 0, . . . ,k − 1. We impose the periodicity condi-
tion that σi(t) = σi(t + k) for all i and all t . We then note that
if σi(t) is known, and if the values of σ j(t − 1) are also known
for j = i − 2, . . . , i + 1, then the value of σi+2(t − 1) is restricted
because of Eq. (2). The value of σi+2(t − 1) might be either “nec-
essarily 0” or “necessarily 1”, it might be “either 0 or 1”, or it
might be “impossible”. In the latter case, the updating stops. In
the ambiguous case, we will have to develop each possibility sep-
arately. Thus if we know all columns up to i + 1, then as we
know σi(k) by periodicity, the values for column i + 2 are re-
stricted as just described. It might seem that this sidewise up-
dating would itself rapidly become unmanageable because of the
ambiguities, but in practice we have found [6] it to be work-
able. It can be (and was) even used by hand with pencil and
squared paper to prove that rule 52 admits no static gliders or
interfaces of minimal temporal period 4 or 5, when all side-
wise updatings ended in the “impossible” case. It is the purpose
of the present work to describe an algorithm, recursive in k, to
systematically generate all possible initial vectors vk mentioned
above.
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Table 2
The number n(k) of independent initial conditions that need to be spatially grown to ascertain unambiguously the periodicity, as a function of the characteristic length k, with
or without considering divisors of k. The number ntot(k) includes all possible divisors, while nu(k) ≡ 2k gives the upper bound for ntot(k), including all possible redundant
cyclic permutations. The last line gives the net “gain” g(k) ≡ nu(k) − ntot(k).

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n(k) 1 2 3 6 9 18 30 56 99 186 335 630 1161 2182
ntot(k) 3 4 6 8 14 20 36 60 108 188 352 632 1182 2192
nu(k) ≡ 2k 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768
g(k) 1 4 10 24 50 108 220 452 916 1860 3744 7560 15 202 30 576
3. The complexity of testing all initial conditions

How could a glider have been missed during the timewise
search mentioned above? We argue the answer to be likely related
with the total number n(k) of initial conditions (without repeti-
tions) that need to be investigated in order to find rigorously all
possible periodic patterns with a “characteristic length” k, either
temporal or spatial.

For elementary 1D totalistic (deterministic) cellular automata
and independently of the automaton rule, we have recently shown
that n(k) is given by

n(k) = 1

k

∑
d|k

μ

(
k

d

)(
2d − 1

)
, (3)

where μ(k/d) is the Möbius function [7]. This expression is valid
for both timewise and spacewise algorithms. It does not contain
the divisors d of k. For each divisor d of k one needs to investigate
an additional n(d) possibilities, making the total number of initial
conditions to be tested to grow to

ntot(k) = 1 +
∑
d|k

n(d), (4)

where the extra 1 counts the trivial vector (0, . . . ,0).
Now, from Table 1 one sees that the missing glider has T = 6

and W = 73. This means that even considering just lower bounds,
the number of initial conditions that one needs to investigate using
spacewise and timewise updating are, respectively,

ntot(6) − 1 = 13, (5)

ntot(73) − 1 = 129 379 903 640 264 252 431 � 1020, (6)

without counting the extra 4 sites needed by the timewise updat-
ing to enforce periodic boundary conditions and subtracting 1 from
ntot(k), to account for the trivial initial condition (0,0, . . . ,0). Thus,
while spacewise updating requires studying the dynamical evolu-
tion for 13 initial conditions, timewise updating requires studying
of the order of 1020 conditions.

The huge number of initial conditions normally required when
dealing with timewise updating made totally superfluous ques-
tions concerning size and completeness of the set of initial con-
ditions. However, independently of the updating algorithm used,
there are situations where one can provide exhaustive answers. In
Table 2 we compare n(k) and ntot(k) with nu(k) ≡ 2k , the upper
bound of ntot(k). The table also contains the net “gain” g(k), i.e.
the number of non-primitive initial conditions that do not need to
be considered because they would just repeat situations already
represented. Note that while for k = 10 one only needs to test
about 10% of the total initial conditions, for k = 15 this number
already drops to 6.6%. As mentioned above, the strong reduction
as k increases allows one to perform definitive classifications for a
number of problems without having to rely on statistical estimates.
The purpose of this paper is to describe an efficient algorithm
that allows one to sort out efficiently the minimal set of initial
conditions that need to have their dynamics investigated explic-
itly.
4. The generation of initial conditions

The aim of this section is to describe the algorithm for produc-
ing without redundancy the minimal set I(k) of initial “k-vectors”
or, equivalently, “k-seeds” that must to be investigated individu-
ally in order to classify exhaustively all periodic patterns having a
characteristic length k (either temporal or spatial) for a given bi-
nary cellular automaton of interest. The total number of k-vectors
in the minimal set I(k) is given by Eq. (4). The algorithm produces
the (k + 1)-seeds from a knowledge of the k-seeds. This recursive
procedure was tested explicitly up to k = 25 and found to be quite
efficient. It should be noted that I(k + 1) is less than double the
size of I(k), and that it is trivial to start the recursive process.

4.1. Preliminaries

Because cyclic permutations of a k-seed give the same result, it
is clear that the first three minimal sets I(k) of initial conditions
can be taken as

I(1) = {
(1), (0)

}
, (7)

I(2) = {
(1,1), (1,0), (0,0)

}
, (8)

I(3) = {
(1,1,1), (1,1,0), (1,0,0), (0,0,0)

}
. (9)

This shows that the number of 1-, 2-, and 3-vectors are, respec-
tively, 2, 3, and 4. In general, a k-vector may be represented by
u = (a1, . . . ,ak) with entries a j from F2 = {0,1}. The main goal of
the algorithm is to produce I(k + 1) from knowledge of I(k). When
no confusion arises, we will say “vector” instead of k-vector.

A very useful property of a pair of k-vectors u = (a1, . . . ,ak)

and v = (b1, . . . ,bk) is that they may be always ordered lexico-
graphically. In other words, we may write u > v if there exists
j � 1 such that a j = 1 and b j = 0 while ai = bi if i < j. For ex-
ample,

(1,0,1,1,0,1,1) > (1,0,1,0,1,1,1)

because a1 = b1, a2 = b2, a3 = b3, a4 = 1, b4 = 0. We will write
u � v if either u > v or u = v . Then � is the so-called “lexi-
cographic” order [13] on the set of k-vectors with entries in F2.
Given k-vectors u and v , either u > v or v > u or u = v . The set
of initial conditions I(k) will be “minimal” in the sense that all
its elements are always distinct: u 	= v . It is well known that any
non-empty set of k-vectors with entries from F2 has a maximum
(or greatest) element with respect to this order [13].

We will say that two k-vectors are equivalent if one may be
obtained from the other by a suitable number (between 0 and k−1
inclusive) of applications of the cyclic permutation (1,2, . . . ,k). For
example, the vectors

u1 = (1,1,0,1), (10)

u2 = (1,1,1,0), (11)

u3 = (0,1,1,1), (12)

u4 = (1,0,1,1) (13)
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form a complete class of equivalent vectors which is ordered lexi-
cographically as follows:

u2 > u1 > u4 > u3.

We take u2, the maximum element with respect to the lexico-
graphic order, as the representative of the class. It is clear that,
apart from the “exceptional” vectors (1, . . . ,1) and (0, . . . ,0), a
chosen representative (a1, . . . ,ak) of an equivalence class will al-
ways have a1 = 1 and ak = 0.

From Eqs. (7)–(9) one might have the impression that I(k + 1)

may be obtained from I(k) by adjoining a 1 to the left side of each
vector of I(k) and finally adding the vector (0, . . . ,0). However,
I(4) is given by

I(4) = {
(1,1,1,1), (14)

(1,1,1,0), (15)

(1,1,0,0), (16)

(1,0,1,0), (17)

(1,0,0,0), (18)

(0,0,0,0)
}
. (19)

From this, one sees that the vector (1,0,1,0) is not obtained from
I(3) by the above procedure. Note that (1,0,1,0) is a repetition of
the 2-vector (1,0). In other words, we may consider that (1,0) is
a divisor of (1,0,1,0) as 2 divides 4.

We say that a k-vector v has minimal period d if d is the small-
est number such that v is invariant under a cyclic-shift of d places;
such a d must be a divisor of k.

The set I(k) is formed by the union of two disjoint sets

I(k) = N(k) ∪ D(k). (20)

The first set, N(k), is the set of all initial vectors which correspond
to minimal period k. That is, N(k) is the complete set of chosen
representatives of the various classes of those vectors that corre-
spond to minimal period k. The second set D(k) is related with
the divisors of k. If d is a divisor of k with 1 � d < k then certain
k-vectors correspond to minimal period d. From each equivalence
class of vectors with minimal period d where 1 � d < k we choose
the maximal vector with respect to the lexicographic order as the
representative, and write D(k) for the set of all such representa-
tives. We include the case d = 1, which corresponds to the k-vector
(1, . . . ,1). The vector (0, . . . ,0) belongs to D(k) because it is in-
variant under shifts by 1 place.

For any v ∈ I(k) we define b ≡ b(v) as the size of a maximal
block of cyclically-consecutive entries which are all equal to 1 in
the vector v . For example, if v = (1,0,0,1,1) then b = 3 because,
due to the boundary conditions, we consider the three entries “1”
to be cyclically-consecutive, while if v = (1,0,1,1,0) then b = 2.

Next, for a given v ∈ I(k) one needs to be able (1) to calcu-
late b; (2) to locate all blocks of b(v) cyclically-consecutive 1s
in v; (3) provided that b � 1, to find the blocks of exactly b − 1
cyclically-consecutive entries equal to 1, if any. In this context, a
“block of exactly 0 entries equal to 1” is defined to be an entry
equal to 0.

It may happen that v possesses more than one block of b
cyclically-consecutive entries equal to 1. For example, if v =
(1,1,1,0,1,1,1,0,1,0,0) then b = 3 and v possesses 2 blocks
of 3 cyclically-consecutive entries equal to 1.

If v possesses just one block of b cyclically-consecutive en-
tries equal to 1, we will say that v possesses a “unique maxi-
mal block” and we will say that v is a UMB vector. For example,
v1 = (1,0,1,1,1,0,1,0,0,1) is a UMB vector with b = 3.

If a vector v is a UMB vector and if its unique maximal
block is situated at the beginning (i.e. at the left-hand end)
of v , then v must be an initial vector because v is greater (in
the lexicographic order) that any shift of v . For example, v2 =
(1,1,1,0,1,0,0,1,1,0) is an initial vector of I(10) with b = 3.
Obviously, v2 may be obtained by performing two shifts on v1
above.

If a vector v is initial it must commence with a maximal
block of b consecutive entries equal to 1, because of the lexi-
cographic order, but it need not be a UMB vector. For example,
v = (1,1,1,0,1,1,1,0,0,0) is an initial 10-vector. Here b = 3 and
v has two blocks of 3 cyclically-consecutive entries equal to 1.

4.2. The algorithm

It is assumed that a lexicographically ordered I(k) is known for
some k � 1. As mentioned before, the aim is to generate an or-
dered I(k + 1) from the knowledge of I(k).

For convenience, during the computation we will use I(k + 1)

as a place-holder for the vectors generated, possibly containing re-
dundancies. Such redundancies will be eliminated by performing a
lexicographic ordering at the end.

Start by adjoining a 1 to (0, . . . ,0) ∈ I(k) to get (1,0, . . . ,0) ∈
I(k + 1). Add the (k + 1)-vector (0, . . . ,0) to I(k + 1).

Proceeding in lexicographic order, for each v = (a1, . . . ,ak) ∈
I(k), v 	= (0, . . . ,0), determine the value of b = b(v). Further, cal-
culate the minimum period, d, to which v corresponds; d is nec-
essarily a divisor of k (possibly equal to k). Store this minimum
period d. By definition of b(v), v has one or more maximal blocks
of exactly b = b(v) consecutive 1s. In particular, provided v 	= (0,

. . . ,0), v must begin with a maximal block of b � 1 consecutive
entries equal to 1. After this, the algorithm consists essentially of
performing two tasks:

(a) Shift v successively through 0,1, . . . , i, . . . ,d − 1 places to ob-
tain vectors v0 = v, v1, . . . , vi, . . . , vd−1. For each i = 0, . . . ,

d − 1, check to see if vi starts with a block of b consecutive
1s.2 If vi starts with a block of b consecutive 1s, adjoin a 1 to
obtain (1, vi). This vector must start with a unique maximal
block of (b + 1) 1s and so must be initial. Place this vector
(1, vi) into I(k + 1). If vi does not start with a block of b con-
secutive 1s, proceed to the next i.

(b) Check whether v has one or more blocks of exactly b − 1 con-
secutive 1s. If so, then shift v an appropriate number of times
up to a maximum of d − 1 places so that each such block, in
its turn, appears at the front. After each such shift, test to see
whether the resulting vector, v ′ , ends in a 0 or a 1. If the vec-
tor v ′ ends in 1, then discard it3; else create a (k + 1)-vector
v ′

1 by adjoining a 1 at the front. After that: Test to see whether
v ′

1 is initial or not: If it is not initial, discard it.4 If v ′
1 is initial,

add it to the set I(k + 1).

Proceed to the next v ∈ I(k).
Finally, put the vectors of I(k + 1) into lexicographic order. This

ends the algorithm. Note that in step (a), all (k + 1)-vectors pro-
duced are distinct and are UMB vectors. Step (b) never produces

2 Of course, v0 does.
3 It might seem that this should not occur; it will not if b � 2, but might occur

if b = 1 because a block of exactly 0 1s is, by our definition, a 0. For example,
(0,1,0) → (1,0,1,0) but (0,0,1) is discarded. The potential new vector if (0,0,1)

was not discarded, (1,0,0,1), is equivalent to the vector we obtain by adding 1 to
the front of (1,0,0).

4 There is no need here to shift v ′
1 to get an initial vector in I(k + 1): such an

initial vector will arise elsewhere. For example, suppose v = (1,1,0,1,0,0) ∈ I(6).
Here, b(v) = 2. Shift to v ′ = (1,0,0,1,1,0). Adjoin 1 to get v ′

1 = (1,1,0,0,1,1,0).
This vector is not initial: its initial representative is w = (1,1,0,1,1,0,0). However,
w arises by adjoining 1 to (1,0,1,1,0,0) and this is a shift of (1,1,0,0,1,0) ∈ I(6)

and so we will obtain w anyway.
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UMB vectors and so there is no possibility that vectors from (a)
and (b) might coincide.

Examples.

(i) Take v = (1, . . . ,1) ∈ I(k). Then step (a) gives (1,1, . . . ,1) ∈
I(k + 1).

(ii) Take v = (1,1,0,1,1,0,0) ∈ I(7). Then step (a) gives distinct
vectors (1,1,1,0,1,1,0,0) and (1,1,1,0,0,1,1,0) ∈ I(8).

(iii) Consider k = 14 and v = (1,1,0,1,1,0,0,1,1,0,1,1,0,0) ∈
I(14), period d = 7. We append a 1 to the front of v to
get (1,1,1,0,1,1,0,0,1,1,0,1,1,0,0) ∈ I(15). If we were to
shift v by 7 places the result would be v again, which is of
no further interest; we avoided this by only shifting v through
0,1, . . . ,d − 1 places. However, a shift of 3 places gives v3 =
(1,1,0,0,1,1,0,1,1,0,0,1,1,0) 	= v; when we adjoin a 1 to
the front of v3 we get (1,1,1,0,0,1,1,0,1,1,0,0,1,1,0) ∈
I(15), and this is different to the vector found above. All other
possible shifts will give either v or v3 or else a vector that
does not start with a block of 2 1s. For example, a shift of 10
places gives (1,1,0,0,1,1,0,1,1,0,0,1,1,0).

Example. Take v = (1,0,0,1,0,1,0), with b = 1. Each of the 4
entries equal to 0 counts as a block of b − 1 = 0 consecutive 1s.
We will shift each in turn to the front:

(0,0,1,0,1,0,1)

(0,1,0,1,0,1,0)

(0,1,0,1,0,0,1)

(0,1,0,0,1,0,1).

Of these, we discard the first, third and fourth. We take the
second, v ′ = (0,1,0,1,0,1,0), and adjoin a 1 at the front: v ′

1 =
(1,0,1,0,1,0,1,0). This vector is initial and has d = 2; we place
it in I(8).

Step (b) in the above algorithm may be replaced by the follow-
ing alternative step:

(b) (alternative) Check whether v has one or more blocks of
exactly b − 1 consecutive 1s. If so, then if b = 1 then shift v (up to
a maximum of d − 1 places) so that each 0 in succession appears
at the front, to give vectors generically called v ′ . If v ′ ends in 1
then discard it. Otherwise create a (k + 1)-vector v ′

1 by adjoining
1 to the front of v ′ . Test to see if v ′

1 is initial; if so, place it in
I(k + 1) and if not, discard it. On the other hand, if b � 2 shift v
(up to a maximum of d − 1 places) so that each block of b − 1
cyclically-consecutive 1s, in its turn appears at the front.5 On each
occasion, create a (k + 1)-vector v ′

1 by adjoining a 1 at the front
of v ′ . Check to see whether v ′

1 is initial. If it is initial, add it to the
set I(k + 1), otherwise discard it.

Proceed to the next v ∈ I(k).
To conclude this section, we remark that although convenient

for humans, lexicographic order is not strictly necessary for the
machine. In fact, the ordering may be omitted without altering the
final results. What matters is that each vector be a representative
of its class.

5. Validation

The purpose of this section is to show that the above algorithm:
(1) produces I(k + 1) containing a complete set of initial vectors,
and (2) does not give repetitions.

5 After each rotation, the resulting vector, v ′ , must end in a 0 because b > 1.
(1) Suppose that v1 ∈ I(k + 1), v1 	= (1,0, . . . ,0) and v1 	= (0,0,

. . . ,0). We wish to show that v1 arises from some vector v ∈
I(k) in either (a) or (b) above. We may also assume v1 	= (1,1,

. . . ,1) because this vector is produced by (a) from the k-vector
(1, . . . ,1) ∈ D(k).

Thus v1 starts with b = b(v1) � 1 consecutive 1s, followed by
at least one 0.

If there are no other blocks of b consecutive 1s in v1 then v1
arises by adjoining a 1 to the left of a k-vector v where b(v) =
b − 1 and such that v starts with a block of b − 1 consecutive 1s;
such a vector v can, if necessary, be shifted to a vector v∗ ∈ I(k)

and so v1 will have been constructed in (a) or (b).
Suppose that v1 possesses further blocks of b consecutive 1s.

Again, v1 arises by appending a 1 to the left of a k-vector v . In
this case, b(v) = b and v must have started with a block of b − 1
consecutive 1s; such a vector v can be shifted to give a vector v∗
which starts with a block of b consecutive 1s and which belongs
to I(k), so that v1 arises in (b).

(2) In (a) and (b) we produce new vectors by appending a 1 to
the left of vectors which are shifts, by at most d − 1 places (where
d is the minimum period) of vectors in I(k). Suppose the vector v1
has been produced by appending a 1 to the left of a k-vector v .
Then v is equivalent to a vector v∗ ∈ I(k), and arises only once
in the process of successively shifting v∗ by 0,1, . . . ,d − 1 places.
It follows that the vectors produced in the algorithm are distinct
among themselves.

6. Algorithm overview

We now give an abridged description of the algorithm of Sec-
tion 4.2. This abridged version generates the same set generated by
the algorithm of Section 4.2. It is however shorter because it relies
on concepts and notation introduced in the previous sections. As
above, the goal is to generate I(k + 1) assuming that the lexico-
graphically ordered set I(k) is known.

Apart from the “exceptional” vectors (1, . . . ,1) and (0, . . . ,0),
a representative vector (v1, . . . , vk) will always have v1 = 1 and
vk = 0.

The algorithm consists of the following steps:

1. Adjoin 1 to the exceptional vector (0, . . . ,0) to get (1,0, . . . ,0)

and place this vector in I(k + 1). Place the (k + 1)-vector
(0, . . . ,0) into I(k + 1).

2. For each vector v ∈ I(k) we need to:
(a) Calculate the minimal period d of v .
(b) Calculate b ≡ b(v), defined as the size of a maximal block

of cyclically-consecutive entries which are all equal to 1 in
the vector v .

(c) Locate all blocks of b cyclically-consecutive 1s in the first
d places of v .

(d) Provided that b � 1, locate all the blocks of exactly b − 1
cyclically-consecutive entries equal to 1 in the first d
places of v .

(e) Shift each block of size b found in (c) to the leftmost posi-
tion and produce new vectors v1 ∈ I(k + 1) by appending
a 1 to the left of the shifted vectors v ∈ I(k). Drop all non-
initial vectors, if any.

(f) If b � 1 and if (b −1)-blocks exist, repeat (e) but for all the
blocks with b − 1 cyclically-consecutive entries equal to 1
found in (d). Drop all non-initial vectors, if any.

3. Order I(k + 1) lexicographically.

7. Conclusions and outlook

In conclusion, we have presented an explicit algorithm to gen-
erate recursively complete sets of initial conditions that need to be
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tested individually in order to obtain exhaustive classification of
patterns, not mere statistical estimates. The algorithm may be ap-
plied equally well to classify spatial or temporal patterns in sys-
tems with a minimal characteristic length k. From the discussion
in Section 3 and a comparison between the numbers given in
Eqs. (5) and (6) one realizes that the choice of an adequate up-
dating algorithm plays a decisive role: while the thermodynamic
limit is certainly out of reach for exhaustive classifications, much
remains to be discovered regarding the classification of periodic
patterns with finite sizes. In particular, spacewise updating might
be now efficiently used to grow patterns under rules of arbitrary
complexity. A recent systematic search combining the spacewise
updating algorithm with a brute force scan of the initial con-
ditions has produced unexpected results, revealing patterns that
were so far overlooked in previous classifications [7]. Now, using
the minimal set of initial conditions as described here, it should
be possible to conduct much wider searches of complex patterns
with longer periods. It should be also possible to adapt the space-
wise updating algorithm to classify automatically traveling gliders
and to investigate what sort of gliders are capable of surviving re-
peated collisions in the lattice and, thus, may be used as carriers
of useful information across extended spatial domains. The present
algorithm combined with spacewise search is also expected to help
finding exhaustive answers concerning the spatio-temporal orga-
nization of cellular automaton models of interesting applications
such as, for example, computer networks [14–17], secure schemes
to share encrypted color images [18], modeling of biological pat-
terns and processes like, e.g., tumor growth [19,20], efficient means
of simulating mixing and segregation of granular media [21] as
well as in a number of fundamental open questions in physics
[22–31].
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Appendix A. MAPLE code for computing n(k) and ntot(k)

The following MAPLE code evaluates Eqs. (3) and (4) and may
be used to extend Table 2. The program is set here to generate all
values of n(k) and ntot(k) up to k = 73, the value given in Eq. (6).
It runs in a small fraction of a second. It is instructive to run it and
see how fast these numbers grow.

with(numtheory):
n(1) := 1:
n(2) := 1:
for k from 3 to 73 do
pdiv := divisors(k)[1..(tau(k)-1)]:

sr(k) :=0:
ntot(k) :=1:
for d in pdiv do sr(k):=sr(k)+d*n(d) od:
n(k) := (2^k - (sr(k)+1))/k:

pdiv := divisors(k);
for d in pdiv do ntot(k):=ntot(k)+n(d) od:
print( k, n(k), ntot(k) );

od:

Alternatively, one may also use a MAPLE function to obtain n(k)

as follows:

with(numtheory):
for k from 1 to 73 do
pdiv := divisors(k); soma(k) := 0:
for d in pdiv do

soma(k):=soma(k)+mobius(k/d)*(2^d - 1) od:
n(k) := soma(k)/k:
print( k, n(k) );

od:
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