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We study the dynamics of patterns exhibited by rule 52, a totalistic cellular automaton displaying
intricate behaviors and wide regions of active/inactive synchronization patches. Systematic com-
puter simulations involving 230 initial configurations reveal that all complexity in this automaton
originates from random juxtaposition of a very small number of interfaces delimiting active/
inactive patches. Such interfaces are studied with a sidewise spatial updating algorithm. This novel
tool allows us to prove that the interfaces found empirically are the only interfaces possible for
these periods, independently of the size of the automata. The spatial updating algorithm provides an
alternative way to determine the dynamics of automata of arbitrary size, a way of taking into
account the complexity of the connections in the lattice. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2732896�

Cellular automata are remarkable test beds combining
phenomena as diverse as chaotic attractors, artificial life,
and universal computation, in a suitable setup for prob-
ing directly the interrelation between network structure
and dynamics.1–5 In this framework, the purpose of this
paper is to report from a fresh point of view an investi-
gation of the high-complexity exhibited by rule 52, a pro-
totypical one-dimensional binary automaton reputedly of
class 4, defined in Eq. (2) below. Instead of focusing on
the time-evolution of the automaton as usual,6–9 here we
explore the spatial connectivity and structure of the lattice.
More specifically, rather than following the time-
evolution of the automaton, we set out to determine
which spatial configurations are allowed generically in
the architecture combining lattice and dynamical rule. In
contrast with the standard approach, from the outset we
work with lattices of indefinite spatial size L, avoiding the
need for subsequently investigating the dynamics of au-
tomata of increasingly larger values of L in order to find
those behaviors which subsist in the thermodynamic limit
L\�. As shown below, considerations of the spatial
structure of the automaton may be translated into an ef-
ficient algorithm to construct and classify explicitly all
complex structures and patterns supported by a given
architecture.

I. INTRODUCTION

The spontaneous generation of complex structures and
patterns in space and time, one of the most challenging and
interesting phenomena of dynamical systems,10–12 has been
the focus of renewed attention due to the many questions
posed by the recent upsurge of interest in complex

networks.1–5 While the emergence of periodic and chaotic
temporal behaviors has been studied in detail during the last
two decades, the genesis of complexity and regularity in
space and time in extended chaotic systems with many de-
grees of freedom remains a much less understood topic.

A very popular way of investigating complicated spatio-
temporal behaviors is to assume their complexity to be due
to cooperative effects between a number of smaller sub-
systems evolving under simple rules and operating on rela-
tively few local degrees of freedom. This “reductionistic ap-
proach,” which in essence asserts that complex things may
be reduced or explained by simpler “more fundamental”
parts, is a point of view that may be traced back to the
ancient pre-Socratic Greek atomistic view of nature or, much
more recently, to Descartes, who argued that, e.g., animals
could be reductively explained as automata.13 Descartes en-
visioned the world like a huge machine, composed of a
myriad of pieces resembling clockwork mechanisms, whose
collective macroscopic behavior could be understood by
studying the individual components of its constituent
mechanisms.13 This point of view is remarkably well-
represented in several mechanical automata invented by
Jacques de Vaucanson in the XVIII century, particularly by
his famous canard digéreur.14

Computationally, a highly efficient way of implementing
the reductionistic approach is by resorting to cellular au-
tomata �CA�, discrete dynamical systems capable of sustain-
ing complex behaviors.6–9 Over the last few years CA have
received a great deal of attention, as may be easily corrobo-
rated by perusing the interesting papers and ingenious appli-
cations discussed in the almost 2000 pages of two very re-
cent conference proceedings.15,16 Cellular automata are
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extensively studied and applied in physics, chemistry, biol-
ogy, traffic engineering, computer science, and other
disciplines.6–9,15–22 As mentioned, despite this activity, sev-
eral fundamental questions still remain open, for instance,
that concerning the precise elementary mechanisms respon-
sible for the genesis and nature of the purported high-
complexity of CA, a key element for applications such as
compression and efficient storage of sound, pictures, and
even whole motion pictures.23,24 The flexibility and reality of
the reductionistic approach is greatly enhanced when consid-
ered in complex, rather than regular, networks.1–5

The generic coarse-grain behavior displayed by cellular
automata was conjectured by Wolfram25,26 to fit into four
classes, numbered from 1 to 4. Loosely speaking, the first
three classes contain the familiar behaviors known for tradi-
tional dynamical systems described by differential equations
and maps, namely, fixed-point, periodic orbits, and chaotic
behaviors. Class 4, containing all behaviors that do not fit
into the three lower classes, is reputed as being very special,
in particular being conjectured to contain automata mimick-
ing Turing machines, i.e., automata capable of universal
computations.6–8

For simplicity and definiteness, here we focus on a to-
talistic binary automaton involving 5 neighbors. For binary
automata involving 5 neighbors Wolfram26 reported two
rules to be of class 4, namely rules 20 and 52. These rules are
among the simplest ones known to be capable of reputedly
highly complex behaviors.7–9

Rule 20 means synchronous updating of local state vari-
ables �i�t�� �0,1�, at site i and time t, according to the pre-
scription

�i�t + 1� = �1, if � = 2 or 4,

0, otherwise.
� �1�

where

� 	 �i−2�t� + �i−1�t� + �i�t� + �i+1�t� + �i+2�t� .

It is clear from this definition, that the updating is controlled
by an integer �� �0,1 ,2 ,3 ,4 ,5� which is a sort of equally-
weighted sampling of the local variables of 5 neighbors; the
site i itself and its near and next-nearest neighbors.

Figure 1 illustrates class 4 behavior generated by rule 20,

where it is easy to recognize the evolution of localized com-
plex structures, called gliders, evolving on a wide quiescent
background formed by sites rigidly synchronized in the zero
state. Such gliders mediate information and are believed to
be the characteristic signatures allowing one to recognize
class 4 behavior, in analogy with the structures familiar from
the Game of Life.8,26 While much has been discussed about
the existence and utility of class 4 automata,7–9,25–35 very
little seems to be quantitatively known about their dynamical
properties.

In the present work we focus on rule 52, an automaton
displaying the same kind of short-lived complexity and glid-
ers seen in rule 20, but evolving in two wide quiescent back-
grounds formed by sites rigidly synchronized to either 0 or 1,
the two binary degrees of freedom. Rule 52 is arguably the
least investigated rule among the simplest candidates capable
of reputedly highly complex class 4 behavior. Surprisingly,
we find all computable gliders of rule 52 to present only
relatively tame time-evolutions, consisting of simple alterna-
tions of active and inactive synchronized patches linked to-
gether by a very small set of communication interfaces, or
motifs, where periodic activity occurs. We classify such in-
terfaces and show how to combine them to produce gliders.
Detailed statistical information about rule 52 and similar
rules is presented elsewhere.36 Before starting, we mention
that while most authors agree that rule 52 produces compli-
cated behavior,25–28 there are also works that, without enter-
ing into details, contradict this point of view.34

The plan of the paper is as follows: In Sec. II we report
on systematic computer simulations involving 230 initial con-
figurations which reveal that all complexity of rule 52 origi-
nates from random juxtaposition of a limited set of elemen-
tary interfaces, described in Sec. III, delimiting active/
inactive synchronization patches. A more detailed report of
this systematic search is given elsewhere.37 Then, in Sec. IV,
we use the elementary interfaces to explain how complexity
arises in rule 52. The main novelty of this paper is introduced
in Sec. V, where we describe a spatial updating algorithm, a
novel and decisive tool that allows us to prove that interfaces
found empirically for the lowest periods are the only possible
ones, independently of the size of the automata and to dis-
cover a totally new class of patterns, not supported in lattices
with periodic boundary conditions and involving spatial
transients. In addition, in Sec. V we argue that the spatial
updating algorithm provides an alternative way to determine
the dynamics of the automaton, a way of taking into account
the complexity of the architecture of the lattice. A summary
and outlook is presented in Sec. VI.

II. COMPUTER SIMULATIONS

For rule 52 the updating of the local state variable
�i�t�� �0,1�, at site i and time t, is performed according to
the prescription

�i�t + 1� = �1, if � = 2, 4 or 5,

0, if � = 3, 1 or 0,
� �2�

where � is the same mean-field value as in Eq. �1�. In sharp
contrast with rule 20, for rule 52 the all-on configuration

FIG. 1. �Color online� Typical complex spatio-temporal patterns produced
by rule 20. After a first transient �short-lived�, the surviving nonquiescent
activity is that of a few localized gliders: three stationary and time-periodic
gliders located roughly at the center of the figure, and a traveling glider on
the right. The collision between traveling and static gliders defines a second
transient �long-lived� of the system, when the dynamics under rule 20 in-
variably collapses into tame class 2 behavior �Refs. 30 and 31�.
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maintains the on state, meaning that 4 or more adjacent on
sites are sufficient to block information flow through the lat-
tice. In particular, all-on sites act like a rubberband in the
sense that an arbitrary number of on sites may be added to
them without effectively disturbing the dynamics.

From Eq. �2� one recognizes that the pair of values �
and 5−� always produce conjugate binary values, indepen-
dently of the specific value of �. Here conjugation means the
simultaneous replacement of 0→1 and 1→0. This fact leads
to the following:

Theorem I: For any given configuration �, the evolution

of its conjugate �̄	C��� always produces the conjugate of
the evolution obtained for the original configuration �.
�For graphical illustrations see Fig. 5 below.�

Figure 2 illustrates typical time evolutions under rule 52
when starting from disordered states, i.e., from random ini-
tial conditions. For simplicity, in this figure we start from
initial states containing an equal number of 0 and 1, and we
use periodic boundary conditions, as usual. Initially, during a
short time scale, Fig. 2 displays a complexity similar to that
of rule 20. Figure 2 also shows that, again, the overwhelming
tendency of all such initial activity is to die very quickly,
with only very specific gliders surviving.

Apart from regions where the evolution resembles that
of rule 20, a nice new feature of rule 52 is to contain addi-
tional domains where the evolution is conjugate to that of
rule 20, i.e., where gliders are composed now by 0s �not by
1s� and move on backgrounds formed by 1s �not 0s�. Such
gliders look like photographic “negatives” of those obtained
under rule 20. By experimenting with different initial condi-
tions it is not difficult to see that behaviors that do not die

after short-lived transients come in just two flavors, both
present in Fig. 2. First, there are large regions of synchro-
nized sites formed by homogeneous patches of either 0 or 1,
represented by the two colors seen in the figure. They corre-
spond to the binary freedom of the automata. Second, rich
activity occurs in the distinct interfaces that bridge different
patches of synchronized behaviors.

III. THE ELEMENTARY INTERFACES

Contemplating figures similar to Fig. 2 for several ran-
dom configurations of initial conditions we observed that the
number of interfaces interconnecting different patches of
synchronized behaviors is rather small. It is then natural to
ask how many different interfaces do exist. To answer this
question we performed a systematic computer investigation
of the interfaces arising asymptotically in a lattice of size L
=30 when considering all 230=1073741824 initial configu-
rations possible. Additionally, a number of tests on moderate
to huge size automata were also done. This search revealed
that all computable complexity observable in the automaton
seems to originate from random juxtaposition of just seven
interfaces and gliders delimiting active/inactive patches, a
remarkably small number of interfaces.

Figures 3 and 4 summarize all elementary interfaces

FIG. 2. �Color online� Typical complex spatio-temporal patterns generated
by rule 52. Top: Asymptotically, the system settles into arbitrarily large
patches of synchronized activity, 0 �white� or 1 �black �purple online��,
interconnected by transition interfaces where cyclic activity occurs. Gliders
may subsist inside individual patches but remain ephemeral as in rule 20.
Bottom: Transition interfaces are static or may travel. Periodic boundary
conditions eventually lead to collisions of interfaces and larger regions of
synchronized activity.

FIG. 3. �Color online� The elementary interfaces needed to produce all
asymptotic complexities computed for rule 52. Interfaces A–E bridge
patches with backgrounds of different colors. Time always evolves down-
wards, here and subsequently.
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found to bridge synchronization patches of different colors or
as gliders propagating on a background of a given color.
Interfaces A–D were found empirically, by direct search of
the 230 initial conditions mentioned, while interface E was
discovered by the algorithm described in Sec. V. In addition
to these elementary interfaces, rule 52 also supports the evo-
lution of the conjugate of each elementary interface, ob-
tained by simultaneously swapping 0→1 and 1→0 in all
sites of the initial conditions. For instance, the initial state �

of the automaton A in Fig. 3 and its conjugate �̄ are given by

� 	 . . . 1 1 1 1 0 1 0 0 0 0 0 . . . , �3�

�̄ = C��� 	 . . . 0 0 0 0 1 0 1 1 1 1 1 . . . , �4�

where C denotes a conjugation operator which inverts the
binary value of each cell of the automaton, and the ellipsis
indicate infinite repetition of the periodic pattern preceding
or following it. The elementary interfaces and gliders �and
their conjugates� in Figs. 3 and 4 are the basic atoms which,
when suitably combined, reproduce the asymptotic activity
and communication boundaries illustrated in Fig. 2. The ex-
istence of the conjugates of the elementary interfaces is a
direct consequence of Theorem I above.

IV. SYNCHRONIZATION AND COMPLEXITY

How do synchronization patches arise in the automaton?
Patches of synchronized behavior arise from collisions be-

tween gliders and, as illustrated by Fig. 5, gliders arise from
the different possibilities of combining elementary inter-
faces. For example, the leftmost structure �labeled 1� seen in
the top row of Fig. 5 may be considered either as an isolated
glider propagating in the white background or, equivalently,
as a double transition between backgrounds, from white
→black→white, constructed with the elementary interface

A, shown in Fig. 3, and its conjugate interface Ā. The inner
core of glider 1, consisting of four adjacent dark cells, is the
minimum one possible. Its size may be “inflated” indefi-
nitely, as hinted by the glider labeled 1� in the bottom row of
the figure. Similarly, glider 2 in Fig. 5 results from an analo-
gous double transition of backgrounds, but this time con-
structed with the elementary interface C shown in Fig. 3, and
its conjugate. The inner core of glider 2 may be also inflated
arbitrarily, as indicated by the glider 2� in the bottom row of
the figure. A more complex glider is that labeled 4: as is not
difficult to realize, it may be composed by first inflating

glider 1 and then embedding the conjugate F̄ of F into it.
By combining gliders and conjugates of gliders as de-

scribed above we were able to produce all asymptotic struc-
tures observed empirically in the computer experiment de-
scribed in the previous section. Since “the conjugate of a fat
glider is also a legal fat glider,” moving in a conjugate back-
ground, one sees that the few structures shown in Fig. 5
allow one to easily recognize new gliders by the simple ex-
pedient of considering structures as moving on backgrounds
different from those originally intended. For instance, cutting
both gliders 1 and 2 along their fat inner cores one obtains
the mirror image of the conjugate of glider labeled S1 in
Fig. 6, etc. More generally, the effect of removing all label-
ing from Fig. 5 is to introduce ambiguities which produce
optical illusions very easily, in the sense that different people
may recognize different gliders when first looking at the
unlabeled figure.

FIG. 4. �Color online� Elementary structures F and G which may be re-
garded as localized structures that may or may not travel, or interfaces
bridging two identical but spatially separated phases. The traveling glider T1

is not elementary but a juxtaposition of B and B̄, the conjugate of B. It
travels at the “speed of light” in the system: one cell per time step. Glider G
travels at 1 /9 cell per step.

FIG. 5. �Color online� Gliders arising when interfaces are glued together.
Top: the simplest motifs surviving on a white background representing ze-
ros. Middle: conjugates of the gliders in the top row, white structures sur-
viving on a black background of ones. Bottom: “fat” gliders, i.e., the same
gliders seen on the top row but now with “inflated” inner cores of ones. Note
the different possibilities of combining interfaces.

FIG. 6. �Color online� Top: Static hybrid gliders formed by juxtaposing
distinct elementary interfaces. The four black sites separating interfaces may
be inflated arbitrarily, as indicated in Fig. 5. Center: static gliders formed by
dephasings due to the different ways of juxtaposing identical period-3 inter-
faces. Note that S3 has “rotational symmetry” with respect to its central axis
while S3� and S3� have “helicoidal symmetry,” i.e., involve a reflection plus a
one time-step shift as hinted by the additional coloring. The minimum dis-
tance between interfaces is larger for the gliders located on the left, to
prevent white cells from interacting. Bottom: Hybrid gliders due to the three
possible time-dephasings between different period-3 interfaces.
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Figure 6 illustrates typical static gliders obtained when
juxtaposing interfaces which may be similar or not. It is clear
from the figure, that several closely related patterns arise
when combining interfaces having temporal periodicities

larger than 1. For instance, using interfaces C and C̄ we may
generate three distinct but closely related fingers, denoted S3,
S3�, S3� in Fig. 6. While S3 has “rotational symmetry” with
respect to its central axis, its partners S3� and S3� have a more
elaborate “helicoidal symmetry” involving a spatial reflec-
tion plus a one time-step shift as may be recognized compar-
ing their periods painted with the darker coloring. Further,
note that the minimum distance between the pair of inter-
faces forming S3 and S4 is larger than that of their partners in
order to prevent cells from interacting.

V. ALGORITHM FOR SPATIAL UPDATING

The restricted number of interfaces summarized in Figs.
3 and 4 prompted a natural question concerning the possibil-
ity of proving generically that such interfaces are the only
ones possible for low periods and of proving that missing
periodicities are in fact impossible under rule 52. An addi-
tional valuable result would be to come up with an algorithm
allowing the automatic search and discovery of gliders of
higher periods or a proof of their inexistence.

In fact, the existence of large synchronized patches may
be exploited to produce an efficient “sidewise” updating al-
gorithm to find all possible interfaces of a given period. The
purpose of this section is to explain how this algorithm
works and to use it to check the completeness of the inter-
faces in Figs. 3 and 4.

Figure 7 displays the basic construction used to locate
periodic patterns, applied to the specific case of period-1
patterns. To have a period-1 pattern means to have in the
automata a line of states at time t that repeats itself at time
t+1. As indicated in Fig. 7, one starts by assuming a large
patch of synchronized states, say zero states, to the left of the
place where an interface is supposed to exist. Initially, the
states of all sites to the right of the interface are not known
�undetermined� and are therefore left blank. The rule of the
game is to determine the state of such sites. The basic idea to
be iterated by the algorithm is to use the known values of the
sites on the left of the interface to determine the values of the
sites on its right. In other words, assuming the existence of a
synchronized patch of zeros on the left, we try to “grow” a
periodic interface to the right.

At time t, the first unknown state in the automaton is that
for the site located where the interface is presumed to grow,
namely at the site i+2. Since we are assuming existence of
period-1, the state of the site i+2 may be determined from
the fact that the state of site i at time t+1 must be identical to
that of site i at the previous time t. If all sites to the left of the
presumed boundary are zero �and in particular if �i�t+1�
=0�, then at time t we must also have

�i+2�t� = a , �5�

where a stands for an “ambiguous state,” i.e., for a state that
would always satisfy rule 52 identically, independently of the
choice a=0 or a=1, the two possible states for a binary
automaton. In all figures in this Section, ambiguous states are
marked by a purple �i.e., darker� background, with the num-
ber inscribed in it indicating the particular choice of binary
value made in order to proceed. The hypothesis of existence
of period-1 in the automaton implies that, whatever the
choice of a in Eq. �5�, we must necessarily have that same
value at time t+1, namely,

�i+2�t + 1� = a . �6�

This fact is schematically indicated by the downward arrow
in Fig. 7, which is there to indicate that whichever value is
chosen for the site i+2 at time t, it must be copied into the
same site at time t+1. The choice a=0 is not interesting
because it produces just a trivial result; it fills the �i+2�th
column with zero, thereby increasing by one the size of the
synchronized patch of zeros existing on the left side of the
presumed location of the interface.

The nontrivial choice a=1 produces the sequence of spa-
tial evolutions shown in Fig. 8. Fixing a=1 and repeating the
reasoning used in Fig. 7 one sees that the hypothesis of a
period-1 pattern leads first to 5 unambiguous choices, indi-
cated in Figs. 8�a�–8�e� and then to the ambiguous situation
in Fig. 8�f�. After that, a repeated choice a=1 has again a
trivial effect; it simply increases the size of the synchroniza-
tion patch of 1s, preserving the possibility of an ambiguous
choice indefinitely as the procedure is repeated more and
more. By consistently making the choice a=1 at every sub-

sequent ambiguity one produces the interface Ā, the conju-
gate of A represented in Fig. 3.

In contrast, if after the initial choice a=1 we consistently
impose a=0 at every subsequent ambiguity, then we induce a
transition from a synchronized patch of 1s back into a syn-
chronized patch of 0s, leading to the situation marked with
label 1 in the upper line of Fig. 5. As is not difficult to
realize, the size of the patch of 1s might be increased indefi-
nitely by a suitable choice of a=1 before imposing the con-
stant choice a=0.

In this way, by alternating the choices a=1 and a=0, one
may produce an arbitrary quantity of interfaces and gliders
and, correspondingly, of patches of synchronized behavior of
any arbitrary size. Obviously, the complexity generated by
this alternation of synchronized patches simply reflects the
arbitrary sequence of choices of 1s and 0s when reaching
ambiguous states. Thus, independently of the size of the au-
tomaton, we have demonstrated the following:

Theorem II: Modulo a trivial conjugation, Rule 52 sup-

FIG. 7. �Color online� The basic construction used for sidewise updating of
the automaton, i.e., for spatial updating, and to locate periodic patterns,
illustrated here for the simplest scenario possible: fixed point �i.e., period 1�.
Since �i�t+1�=0, the first site of the interface is ambiguous, i.e., �i+2�t�
=a, where a=0 or a=1, because both values satisfy rule 52, Eq. �2�. What-
ever the value chosen, it must be copied downward, as indicated by the
arrow, to ensure period-1. The evolution for the nontrivial choice a=1 is
shown in Fig. 8.
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ports only one elementary interface of period one, that la-
beled A in Fig. 3.

Before proceeding, we describe two useful properties
that greatly simplify all subsequent analyses: �i� the possibil-
ity of sometimes considering two spatial updates simulta-
neously, instead of the single update considered above, and
�ii� the existence of deadlock configurations, which block
further spatial grow of a structure. We start by considering
the situation illustrated in Fig. 9�a�, showing a possible
interface/glider of period-3. The purpose of this figure is to
show that, for this and similar configurations, a pair of 1s is
needed to ensure that a period-3 interface may have a chance
to grow beyond just a few sites. This is so because the other
possible choice, namely 01 instead of 11, would violate rule
52. Then, moving further upwards, one finds the existence of

a second pair of ambiguities, indicated by the letters ab in
Fig. 9�b�. The choice ab=11 is impossible because it violates
rule 52. The choice ab=00 leads to a deadlock configuration
because it is impossible to find a value for X in Fig. 9�c�
which does not violate rule 52.

Figure 10 summarizes key properties of rule 52. In the
two uppermost figures one sees the pair of ambiguous con-
figurations, for which the binary value of site i at time t+1
does not depend of the value of a at time t. The remaining
two figures show the pair of deadlock configurations, when
the value at time t+1 is impossible, independently of the
value of X. These configurations play an important role lead-
ing to branching and deadlock, respectively, of a spatial up-
dating. A combinatorially intricate problem is to determine
theoretically the number of ambiguities and deadlocks for a
given starting configuration. Such numbers provide a mea-
sure of the computational complexity of determining or of
ruling out spatial periodicities for a given period.

Figure 11 illustrates the nontrivial �10�T automaton con-
figuration used to investigate interfaces/gliders of period

FIG. 8. �Color online� Proof that rule 52 supports only one elementary
interface/glider of period one. �a� The bit highlighted is determined by the
left-neighbor of the starting configuration. Yellow �light gray� indicates that
the construction may proceed since none of the deadlock configurations
discussed in Fig. 10 below was found. �b–e� The bit determined in the
previous step is copied and a new bit is determined. �f� A new darker color
�shading� is used to indicate that an ambiguous situation is reached, when
both 0 and 1 are valid choices. Repeated choices a=1 increase the size of

the synchronization patch of 1, producing the interface Ā, the conjugate of A
in Fig. 2, preserving the possibility of an ambiguous choice indefinitely �see
text�.

FIG. 9. �Color online� Initial developments for proving existence of
interfaces/gliders of period 3, when two sites are considered simultaneously.
�a� A pair of 1s is required on the right. �b� The choice a=1 and b=1
violates rule 52. �c� Deadlock generated by the choice ab=00. Conclusion:
ab may only be 10 or 01. These two choices are analyzed in Fig. 12.
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two. Note that here and below we may neglect trivial starting
configurations like �00�T and �11�T, that are either trivial or
contained in lower periods already considered. By repeating
the procedure used in Fig. 8 to investigate period 1 it is not
difficult to realize that the algorithm has a unique evolution
possible, until reaching the ambiguous configuration repre-
sented in Fig. 11. From this figure one recognizes the pattern
F shown in Fig. 4. Further, it is also easy to recognize that
selecting a=0 will increase the size of the synchronization
patch of 0 states, while the choice a=1 for two adjacent sites
�similarly to the configuration shown in Fig. 9�a�� will sim-
ply generate a repetition of glider F, until another ambiguity
similar to that in Fig. 11 is reached. By suitable selections we
may produce pairs of F gliders separated by arbitrary large 0
synchronization patches. In summary, this demonstrates that

for period two, independently of the system size and modulo
trivial conjugacies and repetitions, we have:

Theorem III: Rule 52 supports only one elementary
interface/glider of period 2, that is labeled F in Fig. 4.

To learn about all possible interfaces/gliders of period
three one needs to finish the analysis of the nontrivial cases
left open in Fig. 9, namely the pair of choices 10 and 01
which obey

a + b = 1. �7�

The development of both situations is shown in Fig. 12
which, as before, shows that for period three, independently
of system size and modulo trivial conjugates and repetitions,
we have:

Theorem IV: Rule 52 supports only two elementary
interfaces/gliders of period 3, namely those labeled C and D
in Fig. 3.

Proceeding as above, after long but straightforward com-
putations we discovered conclusive results for all temporal
periods k up to k=10. As before, independently of system
size, modulo trivial conjugates and repetitions, and not
counting nongenuine structures, namely those already known
for the divisors d of the period k such that d�k, we find the
following additional results:

Theorem V: Rule 52 supports no elementary interface/
glider of genuine periods k=4, 5, 8, 9, and 10.

Theorem VI: Rule 52 supports only one elementary
interface/glider with genuine period 6, that is labeled E in
Fig. 3.

For period-7 our spatial evolution algorithm uncovered a
remarkably interesting interface, shown in Fig. 13, that �i�
involves a spatial transient of 32 sites and which may propa-
gate indefinitely when started from the initial configuration
�1100000�T; and �ii� possesses a spatially periodic structure

FIG. 10. �Color online� Key properties of rule 52. Two uppermost panels:
Ambiguous configurations, when the binary value of site i at time t+1 is true
independently of the value of a at time t. Two lowest panels: Deadlock
configurations, when the value at time t+1 is impossible, independently of
X. The precise location of a and X in the 5-cells neighborhood is irrelevant.
The colors marking ambiguous and deadlock configurations will be used
subsequently.

FIG. 11. �Color online� Proof that there is only one possible arrangement
leading to an elementary structure of period-2, that is labeled F in Fig. 4.
The ambiguity a is preserved as the structure grows to the right by selecting
a=0. Selecting a=1 in the manner shown in Fig. 9�a� will generate another
structure F. Arbitrary alternations of F structures are possible by suitably
intercalating choices a=0 and a=1.

FIG. 12. �Color online� Proof of the existence of just two elementary
interface/gliders of period three for the pair of possible initial configurations.
Top two rows: Development of the cases ab=10 and ab=01 discussed in
Fig. 9�b�. Bottom two rows: Development for the remaining possibility of
initial configurations, both leading to deadlock.

026113-7 Spatial updating of automata Chaos 17, 026113 �2007�

Downloaded 03 Jan 2008 to 143.54.109.114. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



of period 49 following the spatial transient. The spatially
periodic structure of period 49 may be used to completely fill
any lattice whose size is a multiple of 49, to produce cover-
ings as discussed in Ref. 35. An interesting open question is
to find all possible temporal transients �if any� leading to this
very complex structure. Note that the pattern in Fig. 13 can-
not be obtained by time-evolving initial conditions via the
usual procedure of imposing periodic boundary conditions
on finite-size lattices. In other words, it is a pattern that can
only be discovered using the sidewise updating introduced
here.

VI. SUMMARY AND OUTLOOK

How complex is rule 52? Since all computable
asymptotic dynamics of rule 52 were found to be reducible
by juxtaposing suitable combinations of no more than seven
elementary interfaces and/or gliders �and their conjugates�, it
seems hard to argue the intrinsic complexity of rule 52 to be
very high, according to any of the usual measures of com-
plexity, particularly that organized around the symbolic dy-
namics of stationary symbol sequences.10 It is not obvious to
us how rule 52 could possibly support universal computa-
tion, a distinctive feature claimed for class 4 automata.7,26 In
fact, our results here seem to lend support to doubts ex-
pressed concerning the very existence of complex cellular
automata.38 While of course a small number of interfaces
might prove insufficient to generate all possible gliders when
one lets the system size grow without bound �thermody-
namic limit�, a systematic multispin-coding search conducted
for very large lattice sizes36 has not revealed new interfaces.
In fact, the interface labeled E in Fig. 3, the largest interface
found, was obtained not while probing the thermodynamic
limit with random initial conditions but by applying the side-
wise spatial-updating algorithm described in Sec. V. It may
also be obtained by symmetry considerations, indicating that
symmetries underlying interfaces may be fruitfully exploited
to generate additional interfaces. Further, for small lattice
sizes it is possible to find even greater regularity, like the
space-filling tilings observed for rule 20 very recently.35

It seems worth emphasizing that although the asymptotic
behavior in the thermodynamic limit discussed here is a deep
and enticing question from a conceptual point of view, there
are many applications of great practical importance which
may surely profit from the short-lived complexity exhibited
by rule 52 during the first few generations and for lattices of
moderately small sizes, particularly for problems in socio-
physics, biophysics, or in problems involving excitable

media,39 especially when allowing for more local degrees of
freedom. Interesting open questions for systems operating
under rules similar to rule 52 are �i� how to harness short-
time complexity to locate expeditiously the future position-
ing of interfaces and gliders along the lattice, and �ii� what
sort of strongly selective mechanism is responsible for so
effectively reducing periods and motifs which survive. For, it
is remarkable that an apparently vast phase-space supports
only a relatively limited gamut of complexity.

As seen above, explicit consideration of the spatial ar-
chitecture of the network allowed the discovery of a new
class of highly complex patterns,40 one example being shown
in Fig. 13. Standard time-based search algorithms would
need to investigate a prohibitively large number of initial
conditions, starting with a minimum size of 249 sites for the
periodic space-tiling part of the structure. In fact, since peri-
odic boundary conditions are normally enforced in time-
based searches, the complete structure seen in Fig. 13 would
not be detected at all by them. The algorithmic complexity
involved in finding static interfaces/gliders from a spatial
analysis increases when the period is large, when considering
traveling structures like B and G in Figs. 3 and 4, respec-
tively, or when considering space-filling tilings.35

We would like to emphasize that a great interest in in-
vestigating interconnections between complex systems and
networks of automata has been around for quite some time
now.41–44 On the one hand, due to the immense amplitude of
the problems and applications that need to be addressed, so
far most of the problems investigated involved only regular
lattices. While regular lattices are obviously networks, they
are not complex networks. On the other hand, despite intense
activity in complex networks in recent years, from a funda-
mental point of view, only a few global rules have so far
emerged concerning the simultaneous effect of coupling ar-
chitecture and dynamics. Our present work shows that the
fresh perspective of considering the spatial interconnections
of the network provides clear information concerning peri-
odic patterns supported by lattices of arbitrarily large sizes
and, more importantly, allows us to discover patterns that
seem hard, not to say impossible, to find by other means,
e.g., by following the standard approach of probing sets of
initial conditions in finite-size lattices with periodic bound-
ary conditions. Apart from applications presented here, the
sidewise updating algorithm opens a fresh path for investi-
gating related questions for a wide range of network topolo-
gies, mechanisms for synchronizing active/inactive patches,
in particular for investigating in a simpler setup recent find-

FIG. 13. �Color online� Spatial information flow for period 7. The pattern above may be extended indefinitely to the right. After a spatial transient of 32 sites
one finds a spatial period of 49 sites. Note that it is impossible to find this asymmetric pattern using the time-honored expedient of time-evolving initial
conditions on finite lattices under periodic boundary conditions. It can only be found using sidewise spatial updating.
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ings that the topology of the network connections may spon-
taneously induce periodic neural activity, contrasting with
chaotic neural activities exhibited by regular topologies.45

These questions are explored elsewhere.40

An interesting possibility opened by our present investi-
gation is to reconsider now under new light the very appeal-
ing results obtained a few years ago by Badii and Politi.38

These authors introduced a method which allows one to
identify a hierarchy of nested levels of grammatical structure
in a generic symbolic sequence, automata in particular. As
they point out, investigations �for rule 22� of a specific limit
set that they define indicate that the spatial configuration is a
good candidate for a second-order maximally complex lan-
guage. In the present context, a hierarchical description of
the limit set is tantamount to the identification of all irreduc-
ible forbidden words38 for increasing length.

To conclude, we briefly mention recent efforts to define
and detect emergence in complex networks as the most sig-
nificant feature discriminating “complex” from “noncom-
plex” systems.44,46 In this context, cellular automata have
traditionally helped to identify features which are maximally
informative about the dynamics of systems and to better op-
timize predictability,47–49 always relying on time-based evo-
lution of structures and topologies. We believe that basic
emergent properties may also profit from complementary
space-based considerations, both in regular and complex to-
pologies, fostering a better understanding of multiscale and
multilevel processes in complex systems. This approach, of
course, still remains totally open.

Note added in proof. We extended the computer search
up to k=15 and found no new interfaces or gliders.
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