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We presentrecurrencerelationsthat generatethetermsappearingin theknownexpressionsfor thedensitiesand thefluxes
of theKorteweg—deVnesequation,andin thedensitiesof themodifiedKorteweg—deVries equation.Our relationsarebased
on theobservationthat for a givenrank r the set{ F

2,) of all partitionsof theinteger2r containsall monomialsof { X,_~)
and { 7;). The relationsarevery easyto programin systemsableto performcomputeralgebra.In addition, we report three
new constantsof motion for themodifiedKorteweg—deVriesequation.

It is well known that certain nonlinearpartial up a system of equationsto be solved for the
differential equationsarising in the study of a several(sometimeshundreds)of c(i0, i1~•••~1,,).
numberof differentphysicalsystemsrangingfrom For systemswith uniform rank [5] thereare ways
nonlinearopticsto hadronphysics obeywhat are of knowing how many monomials are neededin
called conservationlaws. A prominentexampleis the summationfor every rank r. In practice one
the Korteweg—de Vries (KdV) equation which startswith far more monomialsthan neededand
containsan infinite sequenceof conservationlaws from constraintsimposed by eq. (1) determines
[1}. The discoveryof suchan infinite sequenceof thosemonomialsreally presentin T and X. This
conservationlaws for the KdV equation moti- approachis, however,difficult to follow sinceone
vated, in subsequentyears, a lot of activity on quickly endsup with systemsof equationsinvolv-
evolution equations possessinginfinitely many ing severalhundredsof coefficientsc(i0, ~1,..., 1,,)

symmetries[2].Conservationlaws areequationsof to be determined.In this paperwe presentrecur-
the generictype rencerelationsthat providedirectly the monomi-
T + ~ = als that reallyappearin T and X and only these.

t x ‘ “ / This has the effect of reducing the number of

where T (the conserveddensity) and — X (the unknownsand equationsto a minimum, thereby
correspondingflux of T) are polynomialsin a renderingpossiblethe investigationof conserva-
“field” variable u( x, t) andits derivatives,i.e. are tion laws of the KdV and mKdV equationsand,
sumsof monomials we hope, in the future, of other nonlinearevolu-

tion equations.It was pointed out to us by the
C(‘s, ii,..., in) U’00U~1... U’n~, (2) refereeof this paperthat recurrencerelationshave

where u0 u(x, t), u a”u(x, t)/8x”, long beenused in connectionwith conservation
c(i0, i1,..., i ) is a constantand i0, i1, ... are laws for soliton equations[3].We see,however,no
nonnegativeintegers. A brute-force approachto direct connectionbetween our results and the
obtain densitiesand fluxes consistsof summing already available body of results on recurrence
severalmonomials (2) and,using eq. (1), setting relationsfor soliton equations.

In a recentpaper,Torriani [4] showedhow to
usecombinatorialmethodsto obtainconstantsof

* Work partially supportedby the Brazilian agenciesCAPES, motion for the Korteweg—deVries (KdV) and
CNPqand FINEP. relatedequations.His very interesting procedure
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consistsof associatingpartitions of integersaad (d) all threesetsarobtainedfrom identical re-
their Ferrersgraphsto the first densityT andthe currencerelations, but with different initial
first flux — X and then, through simplerules, to conditions, i.e. the generationof { Q1 } and
generateall subsequentT and X obeyingeq. (1). { R, } is identical to that of (F~).
For example,let us take as the Ferrersgraph Since the method generatesonly monomials
associatedwith u0. His first conjecture[4] gives (andnot the numericalcoefficientsin the densities
then :: as the only possiblegraph. This graph is and fluxes), all integrationsover u1 may be per-
associatedto thepartition22 andto the monomial formedas thoughtheyweresimplemultiplications
u~,which is the only onepresentin T2. Applying by u~.Explicitly, for r � 2 we obtain
ConjectureI to the graph:: gives

{7} = {P2,.} — (R2r), (2a)
and ::: , {Xr) = {F2r+2) — (Q2r+2}’ (2b)

which are associatedto the partitions 2~and 32, where
correspondingto u~and u~,respectively.A fur-
ther applicationof the conjecturegeneratesthree 1(2— 4)/2]

different graphs,correspondingto the partitions P1 = u,_2 + ~ UkF_k_2, i � 4, (3)
2~,232 and42 producingu~,u0u~and u~,respec- kO
lively. In this clever way Torriani was able to
generateall known densitiesand fluxes of the Q, u,_2 + ~ ukQ,_k_2, i � 7, (4)
KdV equationas well as the known densitiesof
the modified KdV equation(mKdV). R — + [(t~~~’2l R > 5 5

Themain purposeof thispaperis to presentan — U12 k=O Uk i — k —2’ —

alternativemethodto generatethe monomialspre-
sent in the densitiesand fluxes of the KdV and wherethe symbol[x] meansthelargestintegernot
mKdV equations.Our approachhas much to do greater than x. The following initial values are
with the combinatorial approach proposedby requiredby therecurrencerelations:P2 = = R2
Torriani [4], but the overlapof bothproceduresis = U0, P3 = = R3 = up Q4 = R4= U2, Q5 = U3

difficult to assess.The biggest advantageof the and Q6 = u4. Although numerical coefficientsof
method being proposedhere is that it provides the monomialsin eqs. (3—4) are totally meaning-
recurrencerelations from which the monomialscan less, we found it convenientto avoid summation
beobtained.Theserecurrencerelationsareeasyto of repeatedterms.This can be achievedby drop-
program in systemsable to perform algebraic ping from thesummationsall productsof Uk with
computationslike, for example,REDUCE. monomialscontaining u~with j <k. This obvi-

Let us startwith the KdV equation.We usethe ously constrainsall numericalcoefficients to be
word monomial as in Torriani [4], but denotethe unity. In appendixA we give a REDUCE pro-
set of monomialsin Tr by (T~}, in Xr by (Xr }, gramthat was usedhereto generatethe monomi-
etc. Our method is basedon the following em- als in the densitiesandfluxes of the inväriantsof
pirical observationsmadeof the setof monomials the KdV equation.ProcedurePROD in this pro-
presentlyavailablein the literature[1,5]: gram is used to avoid summation of repeated
(a) for a given rank r, the set { F2,. } of all parti- terms.Themonomialswill also becorrectlygener-

tions of theinteger2r containsall monomials atedif calls to PROD(J,F(K)) are simply replaced
of { Xri } and(7 }; by U(J) * F(K). However,in this casethe numeri-

(b) those monomials belonging to { ~2r } but not calcoefficientsof the monomialswill not beunity
to (X,1} define a set {Q2r) thosein {P2r} anymore.
but not in (T,.) definea set (R2r The aboverecurrencerelationsfor T,. and X,.

(c) the set { F1) may be easily generatedrecur- defineour method to generateall and only those
sively from integrations over u and in the monomialscontainedin the densitiesand fluxes,
derivativesof u; respectively,for the KdV equation.In an analo-
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gous way, the densities for the modified KdV terms of c(r, 0,.. . , 0) and arbitrarily set
equationcanbe obtainedfrom c(r, 0, . .. , 0) = 1/r. Accordingly, the total number

of unknownsis given by the sumof monomialsin

T=v2l+~v~T,k_i+R,., r�2, (6) TrandinXrminusl.
k=0 As part of the presentwork we also recalcu-

lated for the KdV equationall constantsof mo-
where T~= v~,R,. = 0 for r � 4 and tion up to r � 10, and for the mKdV up to r � 8.

The constantsof motion were obtainedfrom the
Rr = i),

3V0V2 ± (1 — ~) (1 — ~ algebraicproceduresgiven in the appendicesA

Xt~_4(v1v3+ (1 — ~ 7)v0v4), r�5 andB. After determiningthe monomialsfor every
rank, we calculatedall numericalcoefficientsby

6,~being the Kroeneckerdelta function.Appendix solving the linear systemof equationsresulting
B gives the correspondingREDUCE implementa- from eq. (1). Such a calculationguaranteesthat
tion of the aboverelation, every functiongeneratedfrom the monomialsob-

For the KdV equation Miura, Gardner and tamedby our method was indeed a constantof
Kruskal [1] reported i. for r � 10 and X,. for motion and that our methodgeneratesthe correct
r � 7. For themKdV, besidesT1/2 and X1/2, they numberof monomials.We found a misprint in
reported7 for r � 5, togetherwith X1 and X2. In one of the constantsof motion alreadyavailable
a subsequentpaper [5] they reportedT~for the in the literature:in eq. (lOb) of ref. [5] the coeffi-
KdV equation.It maybe checkedthat our recur- cient of U0U~ should be + 144/7 instead of
rence relations, and the programsgiven in ap- — 144/7.
pendicesA and B, do reproduceall and only the For the mKdV weobtainedthe following three
known monomials. new constantsof motion:

To give anideaof the amountof work involved = — ~ + 66v~v~— 319v~v~—

in the determinationof each invariant table 1 2640 3 3 12276 2 2 2 396 2 2 960 2

presentsthe numberof unknowns(i.e. monomials) + ‘flv0v2 + ~VOV1V2 + —1--v0v4— ~-1—v0v2v3
in 7. and Xr for r � 10. This table comparesthe — — ~-

4v~v~+ ~v4 — ~v2 (7
numberof monomialsthat mustbe consideredin 1 14 10 2 7 5’

= ~v
0 — 39v0v~+ 117v

8v2— 1014v6v4
a brute-forcecalculationasmentionedbeforewith 0 2 0 1

the effectivenumberof monomialsaspredictedby — ~ + 2~v~v~+ ~ +
our recurrencerelations.Obviously, a lessernum- — 28080 2 — 25~ 2 6 42120 2 2 2

ber of monomials implies a smaller systemof ~ v
0 2v3 v0vl —

equationsto be solved. Table 1 also shows the + ~ —

4v~v~+ 1-~712v
0v~v~

numberof equationsthat oneneedsto solvewhen + i~ 2 + ~ 4 2 109512 2 2
~ v0v2v4 ~ v~v+ —~-—vv

adoptmgour relationsinsteadof bruteforce. Fol- 2 7 1 4
lowing ref. [1], we expressall coefficientsin T, in —

3W2v
1v~— v~v~+ ~ (8)

Table 1
Numberof monomials(unknowns)in 7; and X, with rank r � 10. BF representsthenumberof all monomialsthat exist for a given
rank while M givesthe effectivenumberof monomialspresentin 7; or X, as generatedby our method.The last two lines give the
total numberof unknownsand of equationsin thesystemobtainedby substitutingTM and XM into eq.(1). For r> 5 thesystemis
overdetermined.

Rankr 1 2 3 4 5 6 7 8 9 10

Coef. in TBF 1 2 4 7 12 21 34 55 88 137
Coef. in TM 1 1 2 3 4 7 10 14 22 32
Coef.in XBF 2 4 7 12 21 34 55 88 137 210
Coef. in XM 2 3 5 8 13 20 31 47 71 105
No. of unknowns 2 3 6 10 16 26 40 60 92 136
No. of equations 2 3 6 10 16 27 42 64 99 148
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T
8 = ~ — ~ ± l89v~°v~— ~ to demonstratethe strongimpactof combinatorial

8 2 7 3 6 2 2 analysisin this field. The new constantsof motion
— 405v0v3+ 3600v0v2±31860v0v1v2 reportedin this papersupport the conjecturesof
+ 540v~v~— 162O0v~v2v~— 3O474v~v~ Torriani [4]. In a subsequentpaperwe intend to
— 34020v

4v2v2+ 31590v4v4— ~4~2 presenta recurrencerelationfor the fluxes of the
0 1 3 0 2 11 0 5 mKdV equationandto investigatethe structureof

+ 286848v~v~v~+ °v~v
2v~+ 330804v~v~v~ the next few constantsof motion for both KdV

22 25fl136 2 3 1507896 222 and mKdV equations.All this work is part of a~ v0v~v4 ~ v0v1v3 ~ v0v2v3 . .preliminaryeffort the ultimategoalof which is the
+ ~3v~v~ —

36~’36v
0v~v2v~+ 9~

80v
0v~ study of the integrability of much more corn-

— 344.3~Q 2 + 45~555 3 — 63153 8 plicated nonlinear evolution equations of the
143 I~Ot)205 143 ~ 7 generictype

— 7fl476 4 2 + 3083508 2 4 — 51515Q 2 2
v1v3 v1v2 143 v1v5 — au~~1= F(u, u~,~ ...), (10)

5334336 2 3893832 2 2 — 2267028 4
~ j43 v1v3v4~ ~ v2v,~ 143 v3

like, for example,the BBM equation[6] and the
— ~ (9) equationsdiscussedby Caldasand Tasso[7]. Be-

fore concludingwe would like to observethat for
The correspondingfluxes contain many more the much simpler casediscussedin this paper(of

terms than the densities. For example, X6 Con- equationshaving uniform rankand a = 0) thereis
tans 42 terms, X7 contains 69 and X8 contains alreadyin the literature[8] an algorithmin RLISP
110, while T6, T7 and T8 abovecontain13, 20 and to generatethe densities(not the fluxes). It would
32 terms,respectively, be interestingnow to write a REDUCEcodeable

In summary,we report simplerecurrencerela- of generatingnot only the monomialsbut also the
tions ableto generateall monomialsin the known correspondingnumericalcoefficients.
expressionsfor the densities and fluxes of the
KdV equation,aswell as thosein the densitiesof
the mKdV equation.The greatadvantageof our Acknowledgements
recurrencerelationsis that they are easyto imple-
ment in systemsable to perform computeralge- MTF is a predoctoralfellow of the Brazilian
bra. A REDUCE implementationof themis given ResearchCouncil (CNPq). JACG is a research
in appendicesA and B. Therefore,besidesallow- fellow of the CNPq. He thanks ProfessorH.H.
ing directconstructionof constantsof motion,one Tornani for helpful correspondence.The work of
is able to investigatepeculiar propertiesof corn- our group is supportedby the Brazilian agencies
plicatednonlinearevolution equationsas well as CNPq,FINEP andCAPES.

Appendix A

LINELENGTH 60$ OFF NAT$ ON LIST$ OPERATORU$
ARRAY P(50), Q(50), R(50),TT(20), XX(20)$

COMMENT PROGRAMTO GENERATEDENSITIESrr AND FLUXES XX
FOR THE KDV EQUATION UP TO RANK R (= RNK)
USING EQS.(2-5) OF THE TEXT$

RNK: = 15$ KLIM 2 *(RNI( + l)$
Q(2) := U(O)$ Q(3) := U(1)$ Q(4) := U(2)$ Q(5) := U(3)$ Q(6) := U(4)$
P(2) := U(0)$ P(3) :=

R(2) U(0)$ R(3) U(1)$ R(4) :=
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PROCEDUREPROD(J,POLIN)$
BEGIN SCALAR TERMO,PROV$ARRAY G(25), V(25, 25), VV(25)$

TERMO POLIN$
IF J EQ 0 THEN PROV U(0)*TERMO$
IF J NEQ 0 THEN BEGIN$

G(0) COEFF(TERMO,U(0), VV)$
FOR I := 0: 0(0) DO V(0, I) := VV(I)$
IF J GEQ 2 THEN BEGIN$

FOR I := 1: J—1 DO BEGIN$
G(I) := COEFF(V(I — 1, 0), U(I), VV)$
FOR K := 0: G(I) DO. V(I, K) := VV(K)$
END$

END$
PROV:=U(J)*V(J— 1, 0)$
END$ RETURN PROV$

END$

COMMENT XX(K) = P(2* (K + 1)) — Q(2* (K + 1))
TT(K) = P(2* K) — R(2 *

FACTOR U(0), U(1), U(2), U(3), U(4), U(S), U(6), U(7), U(8), U(9), U(10),

U(ll), U(12), U(13), U(14), U(15)$

FOR K := 4: KLIM DO BEGIN$
IF K GEQ4 THEN

P(K) := U(K — 2) + FOR J := 0: ((K — 4)/2) SUM PROD(J, P(K — J— 2))$
IF KGEQ5THEN

R(K) := U(K — 2) + FORJ := 0: ((K — 5)/2) SUM PROD (J, R(K — J— 2))$
IF KGEQ7THEN

Q(K) := U(K — 2) + FORJ := 0: ((K — 7)/2) SUM PROD(J, Q(K — J— 2))$
IF FIXP(K/2 — 1) THEN BEGIN$

XX(K/2 —1) := P(K) — Q(K)$
WRITE “XX(”,K/2 — 1,”) := “, XX(K/2 — 1)$
END$

IF FIXP(K/2) THEN BEGIN$
TT(K/2) := P(K) — R(K)$
WRITE “TT(”,K/2,”) := “, TT(K/2) END$

END$
END$

APPENDIX B

LINELENGTH 60$ OFF NAT$ ON LIST$ OPERATORV$ ARRAY MT(50), MR(50)$

COMMENT PROGRAMTO GENERATETHE DENSITIES MT FOR THE
MODIFIED KDV EQUATION UPTO RANK R (= RNK)
USING EQ. (6) OF THE TEXT$
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RNK := 8$ MT(1) := V(0)* *2$
MR(1) := 0$ MR(2) := o$ MR(3) := o$ MR(4) := Q$ MR(5) := V(0) * V(2) * * 3$
MR(6) := V(0) * V(2) * V(3) * * 2$ MR(7) V(0) * V(2) * V(4) * * 2 + V(1) * V(3) * * 3$
FACTOR V(0), V(l), V(2), V(3), V(4), V(5), V(6), V(7), V(8), V(9), V(l0),

V(11), V(12), V(13), V(14), V(1S)$
FOR K := 2: RNK DO BEGIN$

IF K GEQ 8 THEN
MR(K) := V(K — 3)* *2*V(0)*V(2) + V(K — 4)* *2*(V(1)*V(3) + V(0)*V(4))$

IF K GEQ 2 THEN
MT(K):V(K— 1)* *2+FOR J:=0: (K—2) SUM(V(J)* *2*MT(K—J— l))+ MR(K)$

WRITE “MT(”, K,”) := “, MT(K)$
END$

END$
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