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We present recurrence relations that generate the terms appearing in the known expressions for the densities and the fluxes
of the Korteweg—de Vries equation, and in the densities of the modified Korteweg—de Vries equation. Our relations are based
on the observation that for a given rank r the set { P,,} of all partitions of the integer 2r contains all monomials of { X,_,}
and {7, }. The relations are very easy to program in systems able to perform computer algebra. In addition, we report three
new constants of motion for the modified Korteweg—de Vries equation.

It is well known that certain nonlinear partial
differential equations arising in the study of a
number of different physical systems ranging from
nonlinear optics to hadron physics obey what are
called conservation laws. A prominent example is
the Korteweg—de Vries (KdV) equation which
contains an infinite sequence of conservation laws
[1]. The discovery of such an infinite sequence of
conservation laws for the KdV equation moti-
vated, in subsequent years, a lot of activity on
evolution equations possessing infinitely many
symmetries [2]. Conservation laws are equations of
the generic type

T+ X, =0, (1)

where T (the conserved density) and — X (the
corresponding flux of T) are polynomials in a
“field” variable u(x, ¢) and its derivatives, i.e. are
sums of monomials

cigy dyyeeey iy )uldult . uln, (2)
where uy, = u(x, t), u,= 0"u(x, t)/0x",
c(igy i,..-,1,) is a constant and i, iy, ... are

nonnegative integers. A brute-force approach to
obtain densities and fluxes consists of summing
several monomials (2) and, using eq. (1), setting
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up a system of equations to be solved for the
several (sometimes hundreds) of c(iy, iy,...,17,).
For systems with uniform rank [5] there are ways
of knowing how many monomials are needed in
the summation for every rank r. In practice one
starts with far more monomials than needed and
from constraints imposed by eq. (1) determines
those monomials really present in 7 and X. This
approach is, however, difficult to follow since one
quickly ends up with systems of equations involv-
ing several hundreds of coefficients c(iy, iy,...,i,)
to be determined. In this paper we present recur-
rence relations that provide directly the monomi-
als that really appear in 7 and X and only these.
This has the effect of reducing the number of
unknowns and equations to a minimum, thereby
rendering possible the investigation of conserva-
tion laws of the KdV and mKdV equations and,
we hope, in the future, of other nonlinear evolu-
tion equations. It was pointed out to us by the
referee of this paper that recurrence relations have
long been used in connection with conservation
laws for soliton equations [3]. We see, however, no
direct connection between our results and the
already available body of results on recurrence
relations for soliton equations.

In a recent paper, Torriani [4] showed how to
use combinatorial methods to obtain constants of
motion for the Korteweg—de Vries (KdV) and
related equations. His very interesting procedure
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consists of associating partitions of integers and
their Ferrers graphs to the first density T and the
first flux — X and then, through simple rules, to
generate all subsequent 7 and X obeying eq. (1).
For example, let us take -- as the Ferrers graph
associated with u,. His first conjecture [4] gives
then :: as the only possible graph. This graph is
associated to the partition 2? and to the monomial
u}, which is the only one present in 7,. Applying
Conjecture 1 to the graph :: gives

and :::

which are associated to the partitions 2° and 32,
corresponding to u) and uf, respectively. A fur-
ther application of the conjecture generates three
different graphs, corresponding to the partitions

24, 23? and 42, producing ug, uu? and u3, respec-

tively. In this clever way Torriani was able to

generate all known densities and fluxes of the

KdV equation as well as the known densities of

the modified KdV equation (mKdV).

The main purpose of this paper is to present an
alternative method to generate the monomials pre-
sent in the densities and fluxes of the KdV and
mKdV equations. Our approach has much to do
with the combinatorial approach proposed by
Torriani [4], but the overlap of both procedures is
difficult to assess. The biggest advantage of the
method being proposed here is that it provides
recurrence relations from which the monomials can
be obtained. These recurrence relations are easy to
program in systems able to perform algebraic
computations like, for example, REDUCE.

Let us start with the KdV equation. We use the
word monomial as in Torriani [4], but denote the
set of monomials in 7, by {7,}, in X, by { X,},
etc. Our method is based on the following em-
pirical observations made of the set of monomials
presently available in the literature [1,5]:

(a) for a given rank r, the set { P, } of all parti-
tions of the integer 2r contains all monomials
of {X,_,} and (T };

(b) those monomials belonging to { P,,} but not
to { X,_,} define a set {Q,,}; those in { P,, }
but not in {7, } define a set { R,, };

(c) the set {P,} may be easily generated recur-
sively from integrations over % and in the
derivatives of u;

(d) all three sets are obtained from identical re-
currence relations, but with different initial
conditions, i.e. the generation of {Q;} and
{ R,} is identical to that of { P,}.

Since the method generates only monomials
(and not the numerical coefficients in the densities
and fluxes), all integrations over u; may be per-
formed as though they were simple multiplications
by u;. Explicitly, for r > 2 we obtain

{1} ={P} = {Rs}, (22)

{Xr}={P2r+2}_{Q2r+2}’ (2b)
where
[(i—-4)/2]
Pi=u_,+ Y wP, , iz4, (3)
k=0
{(i—-7)/2]
Qi=u;_,+ Y wQ,_, 5 iz27, (4)
k=0
[(i—5)/2]
Ri=u,_,+ Y wR_, , iz5, (5)
k=0

where the symbol [ x] means the largest integer not
greater than x. The following initial values are
required by the recurrence relations: P, = Q, =R,
=uy, P;=Q3=Ry=u,, ;=R ,=u,, Os=u,
and Q, = u,. Although numerical coefficients of
the monomials in egs. (3-4) are totally meaning-
less, we found it convenient to avoid summation
of repeated terms. This can be achieved by drop-
ping from the summations all products of u, with
monomials containing u; with j <k. This obvi-
ously constrains all numerical coefficients to be
unity. In appendix A we give a REDUCE pro-
gram that was used here to generate the monomi-
als in the densities and fluxes of the invariants of
the KdV equation. Procedure PROD in this pro-
gram is used to avoid summation of repeated
terms. The monomials will also be correctly gener-
ated if calls to PROD(J, F(K)) are simply replaced
by U(J)*F(K). However, in this case the numeri-
cal coefficients of the monomials will not be unity
anymore.

The above recurrence relations for 7, and X,
define our method to generate all and only those
monomials contained in the densities and fluxes,
respectively, for the KdV equation. In an analo-
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gous way, the densities for the modified KdV
equation can be obtained from

(6)

2 2
T=vl,+ 2 il i r=2,

R, =0 for r<4 and

8r,5)(1 - 8r,6)
xv?_ 4 (v, +(1-8

where T, = v,

R, =0 o0, +(1—

r

r,7)UOU4)’ rxs5,

5, ; being the Kroenecker delta function. Appendix
B gives the corresponding REDUCE implementa-
tion of the above relation.

For the KdV equation Miura, Gardner and
Kruskal [1] reported 7, for r <10 and X, for
r < 7. For the mKdV, besides 7, ,, and X, ,, they
reported 7, for r < 5, together with X, and X,. In
a subsequent paper [5] they reported T;, for the
KdV equation. It may be checked that our recur-
rence relations, and the programs given in ap-
pendices A and B, do reproduce all and only the
known monomials.
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terms of ¢(r, 0,...,0) and arbitrarily set
e(r,0,...,0)=1/r. Accordingly, the total number
of unknowns is given by the sum of monomials in
T, and in X, minus 1.

As part of the present work we also recalcu-
lated for the KdV equation all constants of mo-
tion up to r < 10, and for the mKdV up to r < 8.
The constants of motion were obtained from the
algebraic procedures given in the appendices A
and B. After determining the monomials for every
rank, we calculated all numerical coefficients by
solving the linear system of equations resulting
from eq. (1). Such a calculation guarantees that
every function generated from the monomials ob-
tained by our method was indeed a constant of
motion and that our method generates the correct
number of monomials. We found a misprint in
one of the constants of motion already available
in the literature: in eq. (10b) of ref. [5] the coeffi-
cient of wyu should be +144/7 instead of
—144 /7.

For the mKdV we obtained the following three
new constants of motion:

i i i 12 8
. To give an 1f1ea .of the amount of v».'ork involved Ts = o5 — $ojp? + 660507 — 31902? — 53¢ 594 42
in the determination of each invariant, table 1 20 127%6,2,2,2 4 396,22 s
presents the number of unknowns (i.e. monomials) +250000; + 182 pfpTo? + 26 vovs — Fog,v3
in T,bande, for r. asl 10}.l 'lt“hls tatlb;e wmpgresdthe — 324 U? 3364 vag +us 02 108 ug, (7)
number of monomials that must be considered in
T, = 505" — 390%% + 1170303 — 1014050}

a brute-force calculation as mentioned before with

the effective number of monomials as predicted by — 1490 0] + BOp3p3 + S0 422 | 1404 4,2
our recurrence relations. Obviously, a lesser num- 280803 740,26 _ 120,222
. N — #0003 — E ot — 2 =7 Uplhl3
ber of monomials implies a smaller system of
equations to be solved. Table 1 also shows the + 3500003 — 2422 4 11712, 023

number of equations that one needs to solve when
adopting our relations instead of brute force. Fol-
lowing ref. [1], we express all coefficients in 7, in

Table 1

1eaas 96876 4 2 105512
+ vovzv4 + 5 + 5= v4

393120 U3 _. 598104 .2 2 + 1944 2

77 by 77 Ugs

(8)

Number of monomials (unknowns) in 7, and X, with rank r <10. BF represents the number of all monomials that exist for a given
rank while M gives the effective number of monomials present in 7, or X, as generated by our method. The last two lines give the
total number of unknowns and of equations in the system obtained by substituting Ty, and X, into eq. (1). For 7 > 5 the system is
overdetermined.

Rank r 1 2 3 4 5 6 7 8 9 10

Coef. in Ty 1 2 4 7 12 21 34 55 88 137
Coef. in Ty, 1 1 2 3 4 7 10 14 22 32
Coef. in Xgg 2 4 7 12 21 34 55 88 137 210
Coef. in X, 2 3 5 8 13 20 31 47 A 105
No. of unknowns 2 3 6 10 16 26 40 60 92 136
No. of equations 2 3 6 10 16 27 4?2 64 99 148
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T, = o8¢ — Lo} + 18902 — L pfpt
— 4050802 + 36000]v3 + 3186005302

+ 540v5v2 — 16200030,03 — 30474 v5vs

— 34020030303 + 315900805 — BLygu2

+ 286848 v3viv3 + 128880,3, 07 + 330804 v3viv?

197640 ,2,2. 2 _ 571536,.2,. 3 _ 1507896, 2 2 2
+ 357 vy 11 UphU3 — 31— Uplhls

29160 ,,2..2 _ 3617136 2 2 719280 5
+ 3 11 Ugl1lt3 + 91 gl

143

_ 631538

_ saa30 2 | 4go8sg .3
143 UgUpUs + 533 Ugly 7 0

712476 . 4.2 3083508 .2 4 _ 515160,2 2
-0 vy + =0, 1a3 U105

2, 3893832 .22 2267028 4
U030 + =030, — |05
_ 5832

143 U’ZI- (9)

5334336
+ 2343336

The corresponding fluxes contain many more
terms than the densities. For example, X con-
tains 42 terms, X; contains 69 and X; contains
110, while T;, T, and T; above contain 13, 20 and
32 terms, respectively.

In summary, we report simple recurrence rela-
tions able to generate all monomials in the known
expressions for the densities and fluxes of the
KdV equation, as well as those in the densities of
the mKdV equation. The great advantage of our
recurrence relations is that they are easy to imple-
ment in systems able to perform computer alge-
bra. A REDUCE implementation of them is given
in appendices A and B. Therefore, besides allow-
ing direct construction of constants of motion, one
is able to investigate peculiar properties of com-
plicated nonlinear evolution equations as well as

Appendix A

to demonstrate the strong impact of combinatorial
analysis in this field. The new constants of motion
reported in this paper support the conjectures of
Torriani [4]. In a subsequent paper we intend to
present a recurrence relation for the fluxes of the
mKdV equation and to investigate the structure of
the next few constants of motion for both KdV
and mKdV equations. All this work is part of a
preliminary effort the ultimate goal of which is the
study of the integrability of much more com-
plicated nonlinear evolution equations of the
generic type

u—au, ,=F(u,u,u_,,..), (10)

like, for example, the BBM equation [6] and the
equations discussed by Caldas and Tasso [7]. Be-
fore concluding we would like to observe that for
the much simpler case discussed in this paper (of
equations having uniform rank and a = 0) there is
already in the literature [8] an algorithm in RLISP
to generate the densities (not the fluxes). It would
be interesting now to write a REDUCE code able
of generating not only the monomials but also the
corresponding numerical coefficients.
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LINELENGTH 60$ OFF NATS$ ON LIST$ OPERATOR U$

ARRAY P(50), Q(50), R(50), TT(20), XX(20)$

COMMENT

PROGRAM TO GENERATE DENSITIES TT AND FLUXES XX

FOR THE KDV EQUATION UP TO RANK R (= RNK)
USING EQS. (2-5) OF THE TEXTS$

RNK: = 158 KLIM = 2*(RNK + 1)$

Q(2) = U(0)$ Q(3) = U(1)$ Q(4) = U(D$ Q(5) = U(3)$ Q(6) := U(4)$

P(2) == U(0)$ P(3) = U(1)$
R(2) := U(0)$ R(3) = U()$ R(4) == U(2)$
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PROCEDURE PROD(J,POLIN)$
BEGIN SCALAR TERMO,PROVS ARRAY G(25), V(25, 25), VV(25)$
TERMO := POLINS
IF J EQ 0 THEN PROV := U(0)» TERMOS$
IF J NEQ 0 THEN BEGINS
G(0) := COEFF(TERMO, U(0), VV)$
FOR I:=0:G(0) DO V(0, I) = VV(I)$
IF J GEQ 2 THEN BEGINS
FOR I:=1:J — 1 DO BEGINS
G(I) == COEFF(V( — 1, 0), U(I), VV)$
FOR K = 0: G(I) DO. V(I, K) := VV(K)$
END$
END$
PROV = U(N)*V({J — 1, 0)$
END$ RETURN PROVS$
ENDS$

COMMENT  XX(K)=PQ*(K + 1)) - Q2 *(K + 1))
TT(K) = P2 *K) — R2*K)$

FACTOR U(0), U(1), U(2), U@), U(4), U(S), U6), U(7), U8), U(9), U(10),
U(11), U(12), U(13), U(14), U(15)$

FOR K = 4: KLIM DO BEGINS
IF K GEQ 4 THEN

P(K) == UK — 2) + FOR J:=0: (K — 4)/2) SUM PROD (J, P(K — J — 2))$

IF K GEQ 5 THEN

R(K) = U(K — 2) + FOR J == 0: (K — 5),/2) SUM PROD (J, R(K — J — 2))$

IF K GEQ 7 THEN

Q(K) := U(K — 2) + FOR J = 0: (K — 7)/2) SUM PROD (J, QK — J — 2))$

IF  FIXP(K/2 — 1) THEN BEGIN$
XX(K/2 — 1) = P(K) — QK)$
WRITE “XX(",K/2 — 1,) =", XX(K/2 — 1)$
ENDS$
IF FIXP(K/2) THEN BEGIN$
TT(K /2) == P(K) — R(K)$
WRITE “TT(”,K/2,“) =", TT(K/2) END$
ENDS$
ENDS$

APPENDIX B

LINELENGTH 6038 OFF NATS$ ON LIST$S OPERATOR V$ ARRAY MT(50), MR(50)$

COMMENT PROGRAM TO GENERATE THE DENSITIES MT FOR THE
MODIFIED KDV EQUATION UP TO RANK R (= RNK)
USING EQ. (6) OF THE TEXT$
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RNK = 8% MT(1):= V(0)* 2§

MR(1) == 03 MR(2) := 03 MR(3) := 0$ MR(4) := 03 MR(5) := V(0)* V(2) * * 3$
MR(6) == V(0) * V(2) * V(3) * * 28 MR(7) := V(0)* V(2)* V(4) * *2 + V(1)* V(3) * * 3%
FACTOR V(0), V(1), V(2), V(3), V(4), V(5), V(6), V(T), V(8), V(9), V(10),

v, v(12), v(13), V(14), V(15)3
FOR K = 2: RNK DO BEGIN$
IF K GEQ 8 THEN

MR(K):= V(K — 3)* *2+V(0)*V(2) + V(K — 4)* *2*(V(1)*V(3) + V(0)*V(4))$

IF K GEQ 2 THEN

MTEK)=V(EK — 1)#**2+ FOR J :=0: (K —2) SUM (V(I)* *2+MT(K — J — 1)) + MR(K)$

WRITE “MT(, K,“) =", MT(K)$
END$
END$
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