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We report a systematic two-parameter study of the organization of mixed-mode oscillations and period-
adding sequences observed in an extended Bonhoeffer-van der Pol and in a FitzZHugh-Nagumo oscillator.
For both systems, we construct isospike diagrams and show that the number of spikes of their periodic
oscillations are organized in a remarkable hierarchical way, forming a Stern-Brocot tree. The Stern-
Brocot tree is more general than the Farey tree. We conjecture the Stern-Brocot tree to also underlie
the hierarchical structure of periodic oscillations of other systems supporting mixed-mode oscillations.
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1. Introduction

Mixed-mode oscillation is a ubiquitous phenomenon studied
profusely in experiments and models of prototypic dynamical
systems in chemistry [1-10], physics [11-15], and neuroscience
[16-21]. Mixed-mode oscillations (MMOs) are complex oscillatory
patterns consisting of trains of small amplitude oscillations fol-
lowed by large excursions of relaxation type. For a recent sur-
vey about the properties and use of MMOs in several fields see
Ref. [22].

Although MMOs have already been observed abundantly, such
observations were mostly done by considering the dynamics along
one-parameter sections of multidimensional parameter spaces. An
exception is an interesting work published recently in this journal
by Sekikawa et al. [23]. Among other things, these authors reported
two-parameter bifurcation diagrams of the period-doubling bifur-
cations associated with canards [24] in an extended Bonhoeffer-
van der Pol (BVP) oscillator shown schematically in Fig. 1. This
system is an extended version of the paradigmatic model of
mathematical neuroscience [25] considered by FitzHugh [26] and
Nagumo et al. [27].

* Corresponding author at: Instituto de Fisica, Universidade Federal do Rio Grande
do Sul, 91501-970 Porto Alegre, Brazil.
E-mail address: jgallas@if.ufrgs.br (J.A.C. Gallas).

0375-9601/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2011.01.017

l i(v) Ly Lo

N =) fo P

Ry Rs

El-l_ Eg—l—

Fig. 1. Schematic representation of the BVP oscillator. NC refers to the nonlinear
conductance defined in Eq. (4).

Sekikawa et al. [23] showed that the generation of MMOs and
chaos in the BVP model does not occur only in the presence of
subcritical Andronov-Hopf bifurcations [24], but may also arise in
the supercritical case. Further, by considering bifurcation diagrams,
they have shown period-doubling cascades of canards responsi-
ble for MMOs and for period-adding sequences to exist in narrow
parameter regions where the original canard is observed in the
non-extended model.

Our motivation for this work arises from the fact that the
period-adding sequences studied by Sekikawa et al. [23] resemble
a number of similar sequences observed recently in rather dis-
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tinct scenarios connected with certain “periodicity hubs” [28-31].
Such hubs are remarkable points responsible for organizing the dy-
namics around large portions of the parameter space [30]. For us,
systems displaying MMOs are particularly attractive to investigate
and probe details associated with the nature of the intricate rein-
jections, homoclinic or not, causing periodicity hubs [31] and of
certain reinjection mechanisms arising in multiple-timescale sys-
tems.

This Letter reports the discovery of a new hierarchical organi-
zation of periodic oscillations in the parameter space. Contrary to
a common understanding, in two prototypic models we find MMOs
not to arise structured according to the familiar Farey tree [32]
but, instead, in a distinct but equally remarkable organization,
forming the so-called Stern-Brocot tree [33,34]. The Stern-Brocot
trees are more general than Farey trees and include them as sub-
trees [35,36]. They may be recognized when contemplating the
unfolding of oscillations in two-parameter sections of the con-
trol parameter space. Before proceeding, we mention that we also
found the Stern-Brocot tree in other popular models of MMOs.
However, in this Letter we focus in just two models, namely the
BVP and the FitzZHugh-Nagumo models.

In the next section we review briefly the extended Bonhoeffer-
van der Pol oscillator of Sekikawa et al. [23] and define basic no-
tation. In Section 3 we complement results of Sekikawa et al. by
presenting high-resolution isospike diagrams showing how the
spikes of periodic oscillations auto-organize in parameter space.
In Section 4 we present isospike diagrams for the second exam-
ple, the FitzHugh-Nagumo model, the backbone of the extended
Bonhoeffer-van der Pol oscillator. Isospike diagrams for both mod-
els display similar hierarchical structures which, however, are more
easily visible in the FitzHugh-Nagumo model. In Section 5, we
present the Stern-Brocot tree which underlies the hierarchical
structure of MMOs found for both the extended Bonhoeffer-van
der Pol oscillator and the FitzHugh-Nagumo model. Finally, Sec-
tion 6 summarizes our conclusions.

2. The BVP autonomous oscillator

An important point about the extended Bonhoeffer-van der Pol
system is that, rather than being just an abstract set of equations,
as stressed by Sekikawa et al., the model may be tested in the
laboratory using the circuit in Fig. 1. The equations governing this
circuit are [23,37,38]:

it —iw) 1)
-t ,
di .

L1d—;:—v—rm+E1, (2)
i

L2£=—v—r2i2+E2, (3)

where the nonlinear conductance i(v) is given by a cubic charac-
teristic

i(v)=—g1v+gsv>. (4)

In these equations C, Lj, rj, E; represent a capacitor, inductances,
resistances and sources, respectively. NC denotes the nonlinear
conductance governed by Eq. (4). As usual, i; and v represent
currents and voltage, as indicated. By introducing a rescaled time
defined by t = L1g17, calling 8 = ./g1/g3, and changing variables
and parameters as follows

v=gx, ih1=g1By. i2=ghz (5)
Ey=BBo, Ey=pB1, e=C/(L1g}). (6)
ki=gir1,  ky=gir, ks =1L1/L, (7)
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Fig. 2. Bifurcation diagrams illustrating period-adding and the existence of multista-
bility in the right end of the parameter range. (a) Following the attractor from left
to right. (b) Following from right to left. Here k3 = 0.4.

one may reduce Egs. (1)-(3) to a simpler form which we will ef-
fectively use:

dx

8E=x(1—x2)+y+z, (8)
dy
Y X —kiy+Bo, 9
i x—kiy + Bo (9)
dz
E=k3(—X—kzl+B1), (10)

where, for simplicity, we wrote t instead of 7. This autono-
mous set of equations defines a dissipative flow governed by
a six-dimensional (control) parameter space. Following Sekikawa
et al. [23] we set ky = ki, B; = By, and fix k1 =0.35.

Fig. 2 shows typical bifurcation diagrams for Eqs. (8)-(10). The
diagram on the top of Fig. 2 was obtained by starting from By =
0.475 and “following the attractor” [39] to the right while in the
other diagram we started from By = 0.492 followed the attractor
to the left. They illustrate period-adding sequences and something
that will appear more forcefully in the next figures: the presence
of multistability for large values of By.

3. Isospike diagrams

In Fig. 3 we present a comparison between phase diagrams
obtained by Sekikawa et al. [23] with diagrams computed by us
using our in-house software. The diagrams of Sekikawa et al. are
shown in the top row. The central row shows our first set of
phase diagrams, namely isospike diagrams, discriminating with col-
ors parameter domains characterized by periodic oscillations with
an identical number of spikes within a period. Such diagrams are
a sort of generalized isoperiodic diagrams [40,41]. The isospike di-
agrams display the 14 lowest periods using the 14 colors indicated
by the colorbar, recycling them “mod 14” for higher periods. Black
is used to represent parameters leading to non-periodic oscilla-
tions, i.e. to chaos, while white marks fixed-points (i.e. constant
solutions).
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Fig. 3. Top row: Phase diagrams as computed by Sekikawa et al. [23] for Egs. (8)-(10) for k; = 0.35 and (a) € = 0.10; (b) € = 0.10; (c) &€ = 0.09. Numbers indicate beginning of
doubling cascades. Center row: Isospike diagrams detailing the extension of periodic and chaotic phases. Colors and numbers represent the number of spikes in a period of x,
as indicated by the colorbar. The complex region inside the white box in (d) contains a Stern-Brocot tree and is shown magnified in Fig. 4. Note that a second (symmetrical)
doubling sequence seen on the left of (f) is missing in (c). Bottom row: Lyapunov phase diagrams [30]. Each one of our six diagrams presents results for 800 x 800 parameter
points. (For interpretation of the references to color, the reader is referred to the web version of this Letter.)

Comparing the top and central rows in Fig. 3 one easily recog-
nizes that the latter diagrams contain a number of new features.
In particular, in Fig. 3(d) it is possible to recognize a dense succes-
sion of stripes not present in Fig. 3(a). Such stripes indicate that
periodic oscillations with an ever increasing number of spikes ex-
ist symmetrically on both sides of the green stripe (which marks
parameters leading to periodic oscillations with two spikes in a pe-
riod). The white box seen in Fig. 3(d) is shown enlarged in Fig. 4,
which is discussed in the next section.

The “tip” of the multicolored structure in Fig. 3(d) is shown in
Fig. 3(e) where one may recognize the unfolding of the doubling
cascade, ending in chaos (black), then a large region characterized
by three spikes, then its doubling cascade, followed once again by
chaos (black). What Fig. 3(e) does not show is the presence of a
symmetrical unfolding of bifurcations on the left of By = 0.489.
The beginning of such symmetrical unfolding may be recognized
in Fig. 3(f) which, however, despite being for ¢ = 0.09, displays
essentially the same structure as that of the tip of Fig. 3(d) (com-
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Fig. 4. Top row: Isospike diagram displaying the number of spikes measured in one period of x, as indicated by colors and numbers in the colorbar. The organizations of the
isospike phases form a Stern-Brocot tree. This panel is a magnification of the box in Fig. 3(d). The white box indicates the parameter region shown in Figs. 3(b) and 3(e).
Bottom row: The corresponding Lyapunov phase diagram. Each panel presents results for 1200 x 600 parameter points. (For interpretation of the references to color, the

reader is referred to the web version of this Letter.)

puted for € =0.10). In other words, Fig. 3(f) may be considered as
illustrative of what one sees at the tip of the multicolored struc-
ture inside the white box in Fig. 3(d). Note that the dual nature of
the unfolding is absent in Fig. 3(c). The full symmetry of the un-
folding is shown greatly enlarged in Fig. 4. In Figs. 3(e) and 3(f) it
is possible to recognize the presence of multistability in the right-
most boundary of the 3-spike phase, the two-parameter equivalent
of the multistability visible in Fig. 2.

Finally, the last row of Fig. 3 shows Lyapunov phase dia-
grams [30,42,43] for the same three situations. Colors denote pa-
rameters leading to chaos, i.e. positive exponents, while darker
shadings mark periodicity, as indicated by the color bar. The color
scale is linear on both sides of zero but not uniform from negative
to positive extrema. From these diagrams it is easy to recognize
the location of the chaotic phases, now characterized by positive
Lyapunov exponents (not by absence of periodicity as in the cen-
tral row). The location of the boundaries delimited by Lyapunov
exponents coincide with the boundaries shown in the central row,
obtained by counting spikes.

Fig. 4 shows with much more detail the isospike phases con-
tained in the white box in Fig. 3(d). In this figure one easily rec-
ognizes the effect of multistability on the rightmost part of the
diagram, analogously to the differences seen in Fig. 2. The phase

diagrams in Fig. 4 were generated by “following the attractor” [39]
from left to right, starting from an arbitrary initial constant. We
preferred to expose multistability rather then tune conditions to
hide it.

From Fig. 4(a) one recognizes a clear structural organization of
the isospike phases and it is natural to ask about how the ordering
continues for higher periods. The large blue phase in Fig. 4(a) cor-
responds to 1-spike oscillations. When decreasing k3 one meets
on the right side of the figure the 2-spikes green phase corre-
sponding to the doubling of the 1-spike oscillations. By further de-
creasing k3 one sees that the 2-spikes phase develops two distinct
“armpits”, i.e. two symmetric and independent phases character-
ized by period-doubling cascades that proceed until they accumu-
late in a chaotic phase, represented in black in Fig. 4(a) [in yellow
in Fig. 4(b)]. Although every chaotic phase contains a myriad of
smaller isospike phases embedded in it, the next large phases are
two 3-spikes phases as indicated in the figure. Each of the 3-spike
phases develops its own symmetric pair of armpits. To see how
this process proceeds is difficult in the scale of Fig. 4(a). However,
the ordering may be recognized by resorting to magnifications of
several specific portions of the phase diagram and to bifurcation
diagrams (not show here). The general picture underlying the hier-
archical process is the emergence of an infinite cascade of armpit
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Fig. 5. Stern-Brocot tree observed in isospike diagrams for the FitzHugh-Nagumo model of Eqs. (11)-(13) for a mesh of 1200 x 600 parameter points. (a) Global view of
parameter space. The complete upper sequence should read: (6, 9, 11, 10, 11, [13], 12, 9, 9, [12], [13] 11, 10, 11, 9, 6). The phases corresponding to the numbers inside the
three boxes lie outside the scale of the figure. (b) Enlargement of the white box in (a), showing the beginning of the Stern-Brocot tree. Both panels represent spikes as

observed in a period of v.

pairs appearing in a definite order, mirror images of each other
with respect to the central 2-spikes green domain.

4. FitzHugh-Nagumo oscillator

What is the ordering of the spiking phases in the next level of
the isospike diagram described in the previous section? To answer
this question, we follow a MMO cascade in a distinct model, which
we found to display a more tractable diagram. For such model
it will be possible to recognize the unfolding of periodicity from
fewer diagrams, the pair in Fig. 5.

The second model used is the FitzHugh-Nagumo oscillator
which, as mentioned earlier, is in fact the backbone of the BVP
model. Specifically, we consider the fast-slow dynamical system for
which Durham and Moehlis [44] found periodic or chaotic mixed-
mode oscillations when controlling the system undergoing a super-
critical Hopf bifurcation to be in the canard regime. Their system
is [44]

dv

=WV =D -0+ (11)
MW ev—yw (12)
T yw),

%ZC(To—\/(V—Vi)2+(W—Wi)2), (13)

where a, c, 1o, €, y are parameters and

vi=1(1+a—v1—a+a?), (14)

wi=vi/y. (15)
Following Durham and Moehlis [44] we fix a = 0.1, € = 0.008,
y=1

Fig. 5 shows phase diagrams for Eqgs. (11)-(13) similar to the
ones in Figs. 3 and 4. From Fig. 5 it is possible to recognize
more easily how sequences of periodic oscillations auto-organize
in parameter space, namely the sequence of dominant periods that
emerge under the “armpits” as parameter changes. An important
fact becomes now clear: bifurcation diagrams involving the varia-
tion of a single parameter are not able to catch the subtle unfold-
ing of the MMO cascades. This is so because the several isospiking
phases start in positions that cannot be all intersected simultane-
ously with a line segment.

5. The tree of Stern and Brocot

The correlation between the periodic oscillations progressively
observed in parameter space for MMOs is traditionally investigated
by establishing a one-to-one correspondence of these oscillations
with an ordered set of rational numbers. To do this one normally
starts by first establishing a taxonomy for MMOs by introducing
a symbol L° where L and s refer, respectively, to the number of
large and small amplitude excursions recorded in the time evo-
lution of one of its variables. A well-known ordering of rationals
is generated by assigning to a given pair p/q and p’/q’ of ratio-
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fractions in the Farey and Stern-Brocot trees. The derived sequence obtained from the Stern-Brocot tree reproduces the structure of the cascadings in Figs. 3-5.

nals an intermediary “mediant” rational (p + p’)/(q+¢q). Since the
number of spikes in a period is defined by a single integer, not
by a rational number, we consider “derived trees” formed by sim-
ply summing p and q of known trees used in number theory to
represent sequences of rationals. Fig. 6 compares the sequences of
rationals as generated by Farey [32] and by Stern-Brocot [35] se-
quences. Below them we show sum-trees derived by simply adding
numerators and denominators.

As it is clear from the derived sum-trees in Fig. 6, the spiking
ordering of our MMOs does not correspond to the one generated
by the Farey tree but is in perfect agreement with the integers
of the Stern-Brocot sum-tree. This “good” tree was devised in-
dependently in 1858 by Moritz Stern [33] and in 1861 Achille
Brocot [34]. Stern was a German mathematician and Brocot was a
French clockmaker who used the Stern-Brocot tree to design sys-
tems of gears with a gear ratio close to some desired value by
finding a ratio of small numbers near that value.

The Stern-Brocot sequence differs from the Farey sequence in
two basic ways [35]: it eventually includes all positive rationals,
not just the rationals within the interval [0, 1], and at the n-th
step all mediants are included, not only the ones with denomina-
tor equal to n. The Farey sequence of order n may be found by
an in-order traversal of the left subtree of the Stern-Brocot tree,
backtracking whenever a number with denominator greater than n
is reached. “But we had better not discuss the Farey series any further,
because the entire Stern-Brocot tree turns out to be even more interest-
ing.” [35].

As mentioned, the sequences of integers in the derived Stern-
Brocot sum-tree coincide with the hierarchical organization of
spikes found in Figs. 3-5. Thus, to the abstract application in num-
ber theory and the nice practical application devised originally by
Brocot, we now add another “practical” use for the Stern-Brocot
tree: the integers in sum-trees extracted from them match exactly
the unfolding of spikes observed ordinarily in mixed-mode oscilla-
tions.

Two factors are important to identify the Stern-Brocot tree:
first, one needs to sweep finely two parameters simultaneously
and, second, the tree is observed in isospike diagrams. We find the
total number of spikes to be a more reliable indicator than to the
large-small LS labeling that can produce ambiguities when tuning
two parameters on a finely spaced mesh. For instance, the attribu-
tion of the labels 1° and 0! is ambiguous from the outset as also is
the set of multiple labels possible for sequences of spikes of com-
parable amplitudes evolving as parameters are changed slightly.

We further remark that while isospike diagrams obtained by
using just one of the dynamical variables are easy to obtain and

generally reliable, sometimes the final diagram might depend of
the choice of the variable. This is so because the number of spikes
of the individual variables governing dynamical systems evolves
independently from each other [28]. However, such dependen-
cies may be eliminated by considering the vector quantity defined
by taking into consideration all components governing the flow.
But this extra care is not always necessary. For instance, identical
isospike diagrams are obtained by counting spikes from either x(t),
or y(t), or z(t), in Egs. (8)-(10).

6. Conclusions

In summary, we studied the unfolding of cascades of mixed-
mode oscillations for two prototypical models of excitable systems.
By continuously recording changes in the number of spikes of pe-
riodic oscillations when a pair of parameters is tuned simultane-
ously, we found the number of spikes in periodic oscillations to
emerge organized according to a regular tree of integers that is
easily derived from a Stern-Brocot tree. Although not yet reported,
we already identified the same ordering to be present in a few
other standard models displaying MMOs. Therefore, we believe the
Stern-Brocot tree to hold great significance for the generic descrip-
tion of the hierarchical structure of oscillations observed routinely
in systems supporting mixed-mode scenarios. Since the Farey tree
is believed to have been frequently sighted in devil's staircases
generated by MMOs, an enticing challenge seems now to be to
recognize Stern-Brocot order in such cascades. Be it as it may, we
believe that the nice Stern-Brocot tree will become a major player
in the description of periodic oscillations for a large class of non-
linear systems.

Acknowledgements

J.G.E. thanks FCT, Portugal, for a Postdoctoral Fellowship, Grant
No. SFRH/BPD/43608/2008 and IF-UFRGS for hospitality. J.A.C.G. is
supported by CNPq, Brazil, and by the Air Force Office of Scientific
Research, grant FA9550-07-1-0102. All computations were done in
the computer clusters of the CESUP-UFRGS.

References

[1] J. Hudson, M. Hart, D. Marinko, J. Chem. Phys. 71 (1979) 1601.

[2] J.S. Turner, J.C. Roux, W.D. MacCormick, H.L. Swinney, Phys. Lett. A 85 (1981)
9.

[3] P. Ibison, S.K. Scott, ]J. Chem. Soc. Faraday Trans. 86 (1990) 3695.

[4] V. Petrov, S.K. Scott, K. Showalter, J. Chem. Phys. 97 (1992) 6191.

[5] K. Krischer, M. Eiswirth, G. Ertl, J. Phys. Chem. 96 (1992) 9161.



J.G. Freire, J.A.C. Gallas / Physics Letters A 375 (2011) 1097-1103 1103

[6] K. Krischer, M. Liibke, M. Eiswirth, W. Wolf, ]J.L. Hudson, G. Ertl, Physica D 62
(1993) 123.
[7] LR. Epstein, K. Showalter, J. Phys. Chem. 100 (1996) 13132.
[8] N. Baba, K. Krischer, Chaos 18 (2008) 015103.
[9] K. Kovacs, M. Leda, V.K. Vanag, L.R. Epstein, J. Phys. Chem. A 113 (2009) 146.
[10] L. Yuan, Q. Gao, Y. Zhao, X. Tang, L.R. Epstein, J. Phys. Chem. A 114 (2010) 7014.
[11] For a survey see H.L. Swinney, Physica D 7 (1983) 3, and references therein.
[12] T. Braun, ]. Lisboa, J.A.C. Gallas, Phys. Rev. Lett. 68 (1992) 2770, and references
therein.

[13] S. Rajesh, G. Ananthakrishna, Physica D 140 (2000) 193.

[14] T. Hayashi, Phys. Rev. Lett. 84 (2000) 3334.

[15] M. Mikikian, M. Cavarroc, L. Couedel, Y. Tessier, L. Boufendi, Phys. Rev. Lett. 100
(2008) 225005.

[16] C.A. Del Negro, C.G. Wilson, RJ. Butera, H. Rigatto, J.C. Smith, Biophys. ]. 82
(2002) 206.

[17] G. Medvedev, J.E. Cisternas, Physica D 194 (2004) 333.

[18] A. Kuznetsov, N. Kopell, C. Wilson, J. Neurophysiol. 95 (2006) 932.

[19] J. Rubin, M. Wechselberger, Chaos 18 (2008) 015105.

[20] B. Ermentrout, M. Wechselberger, SIAM ]. Appl. Dyn. Syst. 8 (2009) 253.

[21] H. Rotstein, M. Wechselberger, N. Kopell, SIAM J. Appl. Dyn. Syst. 7 (2008) 1582.

[22] M. Brens, TJ. Kaper, H.G. Rotstein, Chaos 18 (2008) 01501.

[23] M. Sekikawa, N. Inaba, T. Yoshinaga, T. Hikihara, Phys. Lett. A 374 (2010) 3745.

[24] G. Medvedev, Y. Yoo, Physica D 228 (2007) 87.

[25] E.M. Izhikevich, R. FitzHugh, Scholarpedia 1 (9) (2006) 1349.

[26] R. FitzHugh, Biophysical J. 1 (1961) 445.

[27] J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE. 50 (1962) 2061.

[28] C. Bonatto, J.A.C. Gallas, Phys. Rev. Lett. 101 (2008) 054101.

[29] G.M. Ramirez-Avila, ].A.C. Gallas, Revista Boliviana de Fisica 14 (2008) 1;
G.M. Ramirez-Avila, J.A.C. Gallas, Phys. Lett. A 375 (2010) 143.

[30] J.A.C. Gallas, Int. J. Bifurc. Chaos 20 (2010) 197.

[31] J.G. Freire, J.A.C. Gallas, Phys. Rev. E 82 (2010) 037202.

[32] S.B. Guthery, A Motif of Mathematics: History and Applications of the Mediant
and the Farey Sequence, Docent Press, Boston, 2010.

[33] M.A. Stern, J. Reine Angew. Math. 55 (1858) 193.

[34] A. Brocot, J. Horlogers Scientifique Pratique 3 (1861) 186.

[35] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics, second ed., Addison-
Wesley, 1994.

[36] R. Backhouse, J.F. Ferreira, Sci. Computer Progr. 76 (2011), in press, doi:10.1016/
j.scico.2010.05.006.

[37] AN. Njah, U.E. Vincent, ]. Sound Vibr. 319 (2009) 41.

[38] Y. Nishiuchi, T. Ueta, H. Kawakami, Chaos Sol. Frac. 27 (2006) 941.

[39] J.G. Freire, RJ. Field, J.A.C. Gallas, ]J. Chem. Phys. 131 (2009) 044105.

[40] J.A.C. Gallas, Phys. Rev. Lett. 70 (1993) 2714;
J.A.C. Gallas, Physica A 202 (1994) 196;
J.A.C. Gallas, Appl. Phys. B 60 (1995) S203.

[41] J.A.C. Gallas, H.E. Nusse, ]. Econ. Behav. Org. 29 (1996) 447.

[42] C. Bonatto, J.C. Garreau, J.A.C. Gallas, Phys. Rev. Lett. 95 (2005) 143905.

[43] M.A. Nascimento, J.A.C. Gallas, H. Varela, Phys. Chem. Chem. Phys. 13 (2011)
441, doi:10.1039/COCP01038C.

[44] J. Durham, J. Moehlis, Chaos 18 (2008) 015110.


http://dx.doi.org/10.1016/j.scico.2010.05.006
http://dx.doi.org/10.1039/C0CP01038C
http://dx.doi.org/10.1016/j.scico.2010.05.006

	Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems
	Introduction
	The BVP autonomous oscillator
	Isospike diagrams
	FitzHugh-Nagumo oscillator
	The tree of Stern and Brocot
	Conclusions
	Acknowledgements
	References


