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We calculate Feigenbaum’s constant for a double periodic meromorphic function: the
Jacobian elliptic function sn[2K{(m)z, m].

For m = 0 this function reduces to sin(rz), with real period, while for m = 1 it
reduces to a hyperbolic tangent, having a pure imaginary period. For intermediary m
values it is unimodal but with a non-quadratic m-dependent maximum. The bifurcation
tree for sn[2K (m)z, m], although very much compressed in [0, 1], presents § = 4.699...
for all values of m.
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1. Introduction

The purpose of this paper is to investigate convergence properties of a class of
one-dimensional iterative maps having transcendental rather than quadratic non-
linearities. From the work of Metropolis et al.,! it is known that for a broad class of
non one-to-one transformations of [0, 1] onto itselfl there exists a common ordering of
patterns upon iteration. They observed a regular sequence of iterates (U-sequence)
in maps as diverse as the logistic map

Tnp1 = Azp(l — 2y,) (1

and the trigonometric map
_ Tnt1 = Asin(me,), (2)
all having a common A-ordering.! Subsequent work by Grossmann and Thomae?
-and Feigenbaum® established that under some conditions, not only the qualitative
sequence of iterates is the same but certain wniversal quantitative properties as
a function of the parameter® X are also present. This observation is important

2This and seme other facts about 1D maps were already known to Myrberg? in 1958.
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554 J. A. C. Gallas

because the traditional wisdom that “similar equations have similar behavior” must
now be expanded to also allow for situations in which equations that are only
qualitatively similar do indeed show a common underlying guantitative behavior.
The quantitatively similar behavior reported by Feigenbaum using renormalization
theory was the geometric convergence of the A; values for which Eq. (1) shows period
doubling bifurcations. In other words, he showed that

Aici— Ay

z!EEO Ai — X1 =9 (3)
where 6 = 4.6692... is a universal constant. Such universal scaling behavior

was predicted to occur for all 1D maps of the interval [0, 1] having a quadratic
maximum.? As shown by several workers,> ® the period-doubling scenario present
in higher dimensional systems involves a different (also “universal”) constant. For
example, for period-doubling in two-dimensional maps®™® one finds 6§ = 8.7210 . . ..
The renormalization treatment for two-dimensional dissipative maps was done by
Chen et al® In addition, as recently shown by Alexanian,!® it is possible to find a
whole range of values for & for some families of discontinuous two-parameter farni-
lies of maps. Although not explicitly mentioned in Ref. 10, the maps discussed by
Alexanian also involve meromorphic functions.
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Fig. 1. The function f(z} = sn(2K %, m). For comparison, the logistic map is also included. The
logistic map lies very close to sn(2Kz, 0.5).

Figure | shows the graph of sn[2K (m)z, m] for different values of m. K = K(rm)
is the complete elliptic integral of the first kind, corresponding to a quarter period.
Note the sensible flattening of the maximum as m is changed.

The purpose of this paper is to report the calculation of 6 for a class of 1D
unimodal meromorphic maps having a transcendental rather than a quadratic max-
imum. As briefly discussed above, in principle one does not know what to expect
for the numerical values of § for such functions. The function studied here is the -,
double-periodic Jacobian elliptic function snf2K (m)z, m]. By changing the param:
eter m it is possible to substantially alter the nature of its maximum at = = /2.
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As shown below, although the z-range where bifurcation phenomena takes place is
greatly decreased as m is varied from the trigonometric (m = 0} to the hyperbolic
(m = 1) limit, the obtained § values do not depend on m and numerically agree
with that found for maps having quadratic maximum. The sn function has also a
negative Schwarzian derivative.

In the next section we briefly review the calculation of é for the logistic map and
present in Appendix A a FORTRAN code to calculate it, based on the superstable
orbit containing the critical point .= 1/2. Section 3 briefly reviews some needed
properties of the sn function, its Schwarzian derivative and gives tables showing
the convergency of calculations of § for m = 0.0, 0.5 and 0.99. Our conclusions are
summarized in Sec. 4.

2. The logistic map

The universal scaling behavior in the period-doubling route to chacs was found by
Feigenbaum while studying the logistic map defined in Eq. (1). Although the &
corresponding to Eq. (1) is theoretically a constant, its value commonly quoted in
the literature shows a considerable variation on the last significant digits. Further,
many sources quote values with several digits but without discussing how they
were obtained.. Therefore, before caleulating & for transcendental functions, we
reconsider in this section the calculation of § for the logistic map of Eq. (1). Our
main motivation in doing so is to use a familiar exarmnple to assess the reliability of
_the algorithm employed, especially the effects of having to deal with finite-length
computer words. Final computations discussed in the next sections were always
done using REAL¥16 precision on SUN Sparc IPC workstations and on a Cray Y-
MP8/832 supercomputer with essentially the program given in Appendix A. As is
easy to recognize, the precision of the method we use is solely limited by the necessity
of calculating with finite word length the differences A; = A; — A;—; between almost
identical numbers.

We first attempted to calculate § using 64 bit arithmetic on the Cray (single
precision) and on SUN IPC Sparc stations. Both computers produced results of
comparable quality, which converged to about 6 significant digits after 10 bifurca-
tions. After that, the numbers quickly diverged. We advise the reader to run the
program given in the Appendix on different computers and to compare the num-
bers obtained with the “reference” ones given in Table 1. The result of all this is
that longer computer words are essential to assure convergence or, at least, to post-
pone divergence to a later stage. We believe that the double precision calculations
reported here are guaranteed to 10 converged digits. It would be interesting to
extrapolate the numbers given in the table using, e.g. Aitken’s procedure. However
we will not attempt this here since the numbers obtained are by far more precise
than any possible experimental determination of them. Table 1 shows the conver-
gence of the calculation of § for the quadratic map generated in a time equivalent to
18390 seconds on a Cray Y-MP8/832 supercomputer. The several §; were obtained
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Table 1. Evolution of §; for the logistic map using 128 bits precision.

-

A

A=A — iy

D00~ o Wb

3.23608797749978969
3.49856169932770151
3.55464086276882486
3.56666737985626851
3.56924353163711033
3.56978520374994462
3.56991346542234851
3.56993877423330548
3.56994419460806493
3.56994535548646858
3.56994560411107843
3.56994565735885649
3.56994566876289996
3.56994567120529685
3.569945671 72838347
3.56994567184041260
3.56994567186440581
3.56894567186954443
3.56994567187064496
3.56994567187088066
3.56994567187093114
3.5698456T187094195
3.56994567187094427
3.56994567187094476
3.56994567187094487

0.26249372182791182
0.05607916344112335
0.01202651708744365
0.00257615178084182
0.00055176211283428
0.00011817167240389
0.00002530881095697
0.00000542037475945
0.00000116087840365
0.00000:024862460986
0.00000005324777806
0.00000001140404347
0.00000000244239689
0.00000000052308662
0.000600000011202914
0.00000000002399321
0.00000000000513861
0.00000000000110053
0.004G00000000023570
0.03000000000005048
0.00000000000001081
0.00060000000000232
0.00000000000006050
¢.000000000600000011

4.68077099801 069538
4.66205961111410258
4.66840392591840023
4.66895374096762278
4.66915718132884348
4.66919100248509615
4.66919947054 772577
4.66920113460104223
4.66920150951355232
4.66920158752238550
4.66920160451218518
4.66920160811593520
4.66920160889206914
4.66920160905775824
4.66920160909331230
4.66920160910092442
4.66920160910218325
4.66920160910513033
4.66920160908967193
4.66920160915374310
4.66920160858269040
4.66920161186166765
4.66920159077937689

Table 2. Evolution of §; for m = 0, i.e., for the trigonometric map of Eq. (2).

-

A

A.,' = Ai— Ai1

=R e R

0.77773376617160609
0.84638217170667942
0.86145035088263241
0.86469418074586315
0.86538967340501526
0.86553866160451903
0.86557057191975869
0.86557740620568342
0.86557886990381922
0.86557918338329202
0.86557925052100254
0.86557326489984450
0.86557926797935214
0.86557926863888838
0.86557926878014084
0.86557926881039279
0.86557926881687184
0.86557926881825945.
0.86557926881855663
0.86557926881862028

0.06864840553507333
0.01506817917595299
0.00324382986323674
0.00069549265914612
0.00014898819950377
0.00003191031523966
0.00000683428592472
0.00000146369813581
0.00000031347947280
0.000000068713771051
0.00000001437884196
0.00000000307950764
0.00000000065953623
0.00000000014125246
0.00000000003025195
0.00000000000647904
0.00000000000138761
0.00000030000029718
0.00000030000006365

4.55585274992136916
4.64518171767422836
4.66407491233524524
4.66810567187598369
4.66896670825060651
4.66915133360485230
4.66919083759928510
4.66919930270159509
4.66920111507739019
4.66920150330595022
4.66920158644349981
4.66920160425014605
4.66920160806364458
4.66920160888039613
4.66920160905531751
4.66920160909278087
4.66920160910079280
4.66920160910236042
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by using the full 128 bit representation of the A;. The truncated A; displayed in
‘Table 1 are only intended to stress the speed with which their number of significant
digits is reduced as the A; become closer and closer. The steady convergency of the
§; is interrupted at i = 20, where they start to oscillate incoherently. We regard this
spurious effect as loss of precision due to our using of a computer word having only
finite length. Fable 2 presents similar results obtained using the trigonometric map
evaluated with the intrinsic trigonometric sine function of the Cray. The generation
of Table 2 required 12664 seconds. For comparison we quote that the first 23 lines of
Table 1 were obtained in 4961 seconds. The difference of 13429 seconds corresponds
to the time needed to find the last two values (i = 24 and 25). It is important to
notice that due to the particular nature of the recurrence relation involved in the
iteration of the map, it is unfortunately not possible to vectorize the program.

3. Jacobian Elliptic Functions

As demonstrated by Singer'! in 1978, an important tool to study 1D dynamical
systems is the Schwarzian derivative. It can be used to establish an upper bound
on the number of attracting periodic orbits that the map characterizing the 1D
dynamics might have. The Schwarzian derivative of a function f at z is defined as

o () _§ F(z) 2
1= 55 -3 |73

A unimodal map of the interval with negative Schwarzian derivative having n critical
points may have at most n 4 2 stable pericdic orbits at a given parameter value.
For f(z) = Az(1 — z) one finds Sf = —6/(1 — 2z)*. Therefore Sf < 0 for all z,
including the critical point z, = 1/2 at which Sf — —oo. For f{z) = Asin(wz),
Sf = —n? — &ntg*(nx), which is also negative for all z. For the function f(z) =
A sn[2K(m)z, m] one finds

= 2KAen(2Kz, m)dn(2Kz, m),
' = 2Ky A2msn®(2Kz, m) — (1 + m) sn(2K =z, m)],
" = (2K A en(2K 2, m) dn(2Kz, m)[Bm sn?(2Kz, m) — (14 m)],

and, accordingly,

§f = g2 Lt m)snt 2Kz, m) & (m® — 10m + 1) sn*(2Kz, m) +2 + 2m

[msn(2Kz, m) — 1][sn(2K e, m) + 1]{sn(2Kz, m) — 1] ’

which can be shown to be negative for all . For m = @, sn{2K =, m) = sin{zx) and

_the above equations correctly reproduce the aforementioned trigonometric limit. In
the unit interval the first derivative is zero at the critical point z. = 1/2, the root
of en(2Kx, m) = 0. dn(2K=, m) = 0 has no solution for real z. The location of
the zero of the first derivative does not depend on m. Therefore one sees that sn
behaves mmuch like the m = 0 trigonometric case.
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For m # 0 we computed the elliptic integral K using the Ep algorithm of
Carlson!? with a tolerance of 107%¢, Test runs for other values showed the numbers
to be independent of this value. The sn function was computed using the arithmetic-
geometric mean procedure described in Sec. 16.4 of Abramowitz and Stegun.!?

Table 3 presents the evolution of the bifurcation parameters for m = 0.5. As

seen from Fig. 1, this case roughly approximates the quadratic map although both

‘functions do indeed cross over each other. A big difference-in the bifurcation tree

is the range of parameters: the doubling range of the elliptic function is very much

" reduced when compared to that of the quadratic map. Table 3 needed 19894 seconds
to be generated. '

Table 4 shows as before the sequence of bifurcations for m = 0.99. This table
was generated in 19843 seconds. Although this time is comparable to that needed

Tables 3 and 4. §; for m = 0.5 (top) and m = 0.99 {bottom).

. ) . Byl
T ] /\1 A: - /\l - ’\:—-1 61 = TA;
1 (.81551353094105212
2 0.87830989596184075 0.06279636502078863
3 0.89154012214861947 0.01323022618677871 4,74643170375594721
4 0.89436898661401333 0.00282886446539386 4.67686817400658521
5 0.89497467795036901 0.00060569133635568 4.67047206323694686
§] 0.89510439100116956 0.00012971305080055 4.66947105643997452
7 0.89513217123496903 0.00002778023379948 4.66925698814642747
8 (.89513812089496696 0.00000594965999793 4.66921367088871580
9 0.89513939512924592 0.00000127423427896 4.66920416141351210
10 (.89513966803117552 0.0000002729(1192959 4.66920215940360301
11 0.8895139726475841031 0.00000005844723479 4.66920172649196159
12 0.89513973899601810 0.00000001 251 760780 4.66920163430181544.
13 0.89513974167690637 0.00000000268088826 4.66920161449263735
14 0.89513974225107054 0.00300000057416417 4,6692016102581 7430
15 0.89513974237403892 0.00000000012296838 4.66920160935028575
16 0.89513974240037498 0.00000000002633606 4.66920160915596793
i7 0.89513974240601536 - (.00000000000564038 4,66920160911433665
; . — ). , L Adel

i A e . | & = v

I 0.91734829278495591

2 0.86316302308513360 0.04581473030017769

3 0.96851781958737315 0.00535479650223955 8.55583032539452482

4 0.96944798505559518 0.00093016546822203 5.75682143143302075

5 0.96964068512591296 0.00019270007031778 4,82701156615094476

6 0.969681 71469545478 0.00004102956954182 4.69661447755065371

7 0.96969049113882027 0.00000877644336549 4.67496545390423381

8 0.96969237029607514 0.00000187915725487 4.67041453967500116

9 0.96969277273153529 0.00000040243546015 4.66946241307690417

10 0.96969285891985969 0.00000008618832440 4.66925726849623642

11 0.96969287737871223 0.00000001845885254 4,66921355050030824

12 0.96969288133203102 0.00000000395331879 4,.66920416386379859

13 0.96969288217871074 0.00000000084667972 4.66920215658341549

i4 0.96969288236004360 0.00000000018133286 4.66920172631557852

15 0.96969288239887955 0.00000000003883595 4.66920163421138538

18 0.96969288240719702 0.00000000000831747 4.6692016144 7981251
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to generate Table 3, the present table contains only 16 values. Further, note that
the interval where the doublings occur is extremely compressed to the region near
the right end of the [0, 1] domain.

4. Conclusions

We report an accurate numerical evaluation of Feigenbaum’s constant for a class
of meromorphic double-periodic functions, namely for the Jacobian elliptic function
sn(2K=z,m). The main motivation for looking at this function is that although
being unimodal in {0, 1], it presents transcendental rather than quadratic maxima
as a function of m. The map continuously changes from a trigonometric (for rn = 0)
to a hyperbolic (for m = 1) limit. We found that in contrast with its trigonometric
Jimit, the Schwarzian derivative of sn has more than one singularity in [0, 1]. sn
presents a relatively wide transcendental maximum at higher m values. However,
in contrast with other two-parameter meromorphic functions recently studied,'’ sn
presents the same Feigenbaum constant as the logistic map. The numerical results
presented here should be useful in investigations of multiple scaling and of the fine
structure of period-doubling.!* It would be of interest to investigate Feigenbaum’s
constant for other Jacobian elliptic functions, especially those suitably chosen to
present discontinuities on, say, the [0, 1] interval.
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Appendix A

10

[ked

20

30
299

Program used to calculate the numbers given in Table 1.

program delta
implicit real+i6(a-h,k-z)
parameter{ xzero=0.5d0, jstop=25 )
dimension savel(50),saved(50),dif(50)
data lambda/3.0d40/, step0/1.0d0/
open(17,file=’delta.ocut?’)
do 999 j=1,jstop
sinal = 1.040
if{ mod(j,2).eq.0 } sinal = -1.0d40
step0 = step(/4.66940
step = stepl
iter =2
do 10 i=1,j-1
iter = iterx2
lambda= 1aﬁbda + step
continue
x = xzero
do 20 i=1,iter
x = lambda#*x*(1.0d0-x)
if( (x-xzero)*sinal .1t. 0.0d0 } then
lambda = lambda - step
step = step/2.040
endif
lambda= lambda + step
if( lambda-step .1t. lambda) go to 777
lambda
saved(j) = 0.0d0
dit (j) = 0.0
if¢ j.gt.1 ) dif({)
if( j.gt.2 ) saved(j)

savel(j)

savel(j)-savel(j-1)
dif (=12 /dif(§)
write(17,30) j,savel(j),dif(j),saved(j)
format{1x,i3,2x,3(2x,£20.17))

continue
stop

end



