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Abstract. – This paper shows that dissipative dynamical systems with constant Jacobian
allow one to discover the numerical values of physical parameters under which the system is
operating. This is done by performing measurements on self-similar (fractal) structures of the
phase-space. Parameter recovery is illustrated explicitly for the Ikeda laser ring-cavity map
and the Hénon map. The first model involves transcendental equations of motion that can be
solved only numerically. Analytical results are obtained for the second model. In both cases
the macroscopic dissipation rate of the dynamical system is recovered from the speed at which
fractal “fingers” making up basins of attraction accumulate towards basin boundaries.

Many interesting results in physics during the last hundred years have been obtained
from the phase-space. For instance, the phase-space played a decisive role for the idea of
quantization, from the old Bohr-Sommerfeld rule up to the Einstein-Brillouin-Keller (EBK)
quantization [1], when integrals of the action in phase-space were found to be related to
Planck’s constant h. To this day, such relation has had many important implications and
applications. The phase-space allows one to recognize that several different quantum systems
may share a common classical limit [2]. More recently, with the realization of the ubiquity of
deterministic chaos at a classical level and with the search for the implications that chaotic
classical dynamics might have at a quantum level [3], the investigation of phase-space has
acquired a renewed importance. For instance, phase-space was shown to possess new and
unanticipated properties like, for example, to have intrinsic self-similar “fractal” structures [4].
A different sort of intricate structures in phase-pace attracting much attention nowadays are
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the so-called riddled basins [5]. The sensitivity to initial conditions in phase-spaces with
riddled basins is so extreme that no matter how small a volume is chosen, it will always
contain initial conditions leading to different final states. This implies unpredictability at all
scales of resolution. Another very interesting aspect of the phase-space was found recently
by Beck [6] while studying the dynamics of a kicked charged particle moving in a double-
well potential in a time-dependent magnetic field. He showed that certain classical particle
dynamics possess the complex logistic map as its stroboscopic mapping, thereby attaching a
direct physical meaning to the corresponding Julia and Mandelbrot sets [7] which, so far, were
believed to be just abstract mathematical objects. At a different level, it is also revealing that
“The Weyl representation places quantum mechanics in the phase-space” [8].

The phase-space typical of dissipative systems is known to be subdivided, over wide param-
eter ranges, into several basins of attraction, one for each stable motion (attractor) supported
by the system. The invariant boundaries separating such basins may be either smooth or
fractal [4] and involve a hierarchical self-similar alternation of components which typically
accumulate on singularities like, e.g., unstable fixed points or periodic orbits [9].

The purpose of this paper is to report a generic property of the self-similar structures which
compose the invariant basin boundaries of dissipative systems with constant Jacobian. The
parameter space of such systems contains certain eigenvalue paths, namely parameter paths
along which it is possible to discover the numerical value of parameters ruling the dynamics
by performing a standard stability analysis around fixed points [10]. Eigenvalue paths are
obtained from the Jacobian matrix of the system by relating two independent quantities
obtained from it that control the dynamics. The two quantities of interest are the eigenvalue
of largest magnitude and the determinant J of the Jacobian matrix, i.e. the Jacobian of the
map. One finds eigenvalue paths by interconnecting these two quantities.

Parameter recovery is illustrated now for two familiar models: the Ikeda laser ring-cavity
map [11, 12] and the Hénon map [9, 13]. The Ikeda laser ring-cavity map has transcendental
equations of motions and parameters for it must be recovered numerically. In spite of this
technical nuisance, the laser ring-cavity model is of great interest because it may be studied
experimentally in the laboratory [11, 12]. The Hénon map is a paradigmatic model whose
wide-ranging analytical results are easy to obtain. The possibility of recovering parameters
from the geometrical structuring of the phase-space of chaotic systems is a useful theoretical
twist because eigenvalue paths provide privileged parameter loci along which it is particularly
fruitful to perform a plethora of numerical experiments, to study scalings, to study specific
arithmetical properties underlying bifurcation cascades, etc.

We start with the simpler case, deriving analytically the eigenvalue path for the Hénon
map (x, y) �→ (a − x2 + by, x), where x, y denote the usual variables and a, b the parameters.
The dissipation rate is given by the Jacobian J = −b. The volume contraction of dissipative
systems can be evaluated using the Lie derivative along the dynamical vector fields [14]. The
pair of eigenvalues corresponding to the Hénon map are λ± = −xu±(x2

u+b)1/2, where (xu, xu)
is the location of the unstable fixed point: 2xu = b − 1− {(b − 1)2 + 4a}1/2. Substituting xu

into the expression for the eigenvalues one finds an expression for λ+ involving only a and
b. Then, from the relation λ+ = 1/J = 1/(−b) connecting contraction and dissipation, after
some simple algebra we arrive at the following expression for the eigenvalue path:

W (a, b) ≡ 4ab2 − (b2 + b + 1)(b2 + 3b + 1)(b − 1)2 = 0. (1)

Figure 1 shows the parameter loci U and L obtained by solving the equation W (a, b) = 0.
Noteworthy along L is the point p where three different curves meet: in addition to the
eigenvalue path, p also belongs to the 1 → 2 bifurcation boundary and to the saddle-node
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Fig. 1 – (a) The “U”pper and “L”ower portions of the parameter path obtained by solving eq. (1),
W (a, b) = 0, superimposed over salient features in parameter space, particularly over the lines delim-
iting the first few stability domains for the 1× 2n and 3× 2m bifurcation cascades; (b) magnification
of the box in (a) showing the location of p. The phase-space at p is shown in fig. 2. AN indicates
the location of the anti-nose [12] characterized by several discontinuities; A1,3 is the point of dou-
ble accumulation, i.e. the point where both bifurcation cascades, 1 × 2n and 3 × 2m, accumulate
simultaneously [16].

bifurcation line along which orbits of period 3 are born. The point p has several interesting
arithmetical properties [15, 16], e.g., commensurate coordinates: p = (a, b) =

( − 9b∗/2, b∗
)
,

where b∗ = −2+
√
3 	 −0.267949192. This number is an algebraic unit [17]. The phase-space

corresponding to the parameters defining p has a self-similar structure and we now illustrate
how to recover the dissipation rate from this structure.

Figure 2 shows portions of the phase-space corresponding to the point p in parameter
space. The phase-space is given by three bitmaps, each one computed over a rectangular
mesh of 2400× 1200 = 2.88× 106 initial conditions. The phase-space is seen to be subdivided
into three different basins: the gray shading corresponding to the trivial attractor at infinity,
the black basin of a period-3 orbit (located at the vertices of the triangle in fig. 2a), and
the white basin of the stable fixed point indicated by “s”. Figure 2 also shows the unstable
fixed point u = (xu, xu), xu = −(9 − 3

√
3)/2 	 −1.901923. Since u lies exactly on the basin

boundary, it is a rather privileged reference point.
Figure 2b shows a magnification of the rectangle containing u. Figure 2c is a magnification

of a similar rectangle drawn around u in fig. 2b which cannot be seen in this figure because
its size is much smaller than the actual size of the dot representing u. Figure 2b contains an
auxiliary horizontal line passing through u and intersecting the infinite sequence of vertical
doublets of black stripes, which are the basin of attraction of the period-3 orbit. As indicated
in the figure, each doublet might be characterized by four coordinates xi labeling the intervals
containing the black stripes. To simplify the discussion, we call intervals like [x4, x1] a “finger”,
labeling them consecutively f = 1, 2, . . . in the direction towards the accumulation point on the
basin boundary, as indicated schematically by the numbers inside circles near some of them.

Figures 2b and c show the first few of an infinite quantity of such self-similar fingers
which accumulate towards the basin boundary at u. The regularity of the accumulation
process motivates us to measure two characteristic quantities: i) va, the “accumulation speed”,
i.e. the rate at which fingers accumulate towards the basin boundary of the attractor at
infinity, and ii) rc, the “compression rate”, i.e. the ratio with which the width of the pair of
stripes composing each finger gets compressed as fingers move closer and closer to the basin
of the attractor at infinity. We measure these quantities along the horizontal reference line
containing u.
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Fig. 2 – Phase-space displaying self-similar “fingers” f = 1, 2, . . ., labeled by the numbers inside circles.
Each finger contains a doublet of black stripes delimited by four numbers x

(f)
� , 
 = 1, 2, 3, 4 along a

line through the unstable fixed point u, as indicated. (b) and (c) show successive magnifications of
the rectangle in (a).

Fig. 3 – Successive magnifications showing a double structure of self-similar fingers for the laser ring-
cavity map [13] for α = 0.84753 and β = 0.83. The black period-3 fingers “contain” a substructure of
period-36 fingers (shown in gray, in (c)). The period-3 orbit is located at the vertices of the triangle
in (a) and oscillates clockwise. The black dot indicates the unstable fixed point u on the boundary.

So, with the boundary points x
(f)
i we define two “instantaneous quantities” as follows:

v(f)
a =

x
(f+2)
1 − x

(f+1)
1

x
(f+1)
1 − x

(f)
1

, r(f)
c =

x
(f)
1 − x

(f)
2

x
(f)
3 − x

(f)
4

, (2)

together with their corresponding asymptotic limits

va = lim
f→∞

v(f)
a , rc = lim

f→∞
r(f)
c . (3)

By locating numerically the position of the first 13 fingers we find that both quantities obey
exponential laws:

v(f)
a = va + exp[−1.33 f − 2.40] and r(f)

c = rc + exp[−1.32 f − 1.03], (4)
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where va 	 0.267949195 and rc 	 1.49978549. In both cases, the magnitude of the character-
istic exponent is close to 4/3. Such value was recently reported to be “universal” for a large
number of rather different situations [18]. What is particularly interesting here is that our
results seem to provide a novel and plausible explanation for the ubiquity of the exponent:
the 4/3-scaling would arise as a consequence of the linearized dynamics near fixed points of
the equations of motion.

Comparing va with J = −b we find
va 	 0.267949195 , (5)

J = 2−
√
3 	 0.267949192, (6)

a quite good agreement, corroborating the relation λ+ = 1/J used to derive eq. (1). The
same value of va was obtained considering other reference lines not tangent to the basin
boundary or otherwise too particularly placed. The numerical coincidence between va and
J shown in eqs. (5) and (6) was checked for more than 30 different parameter values lying
on the eigenvalue path, always yielding the same good agreement. Thus, one sees that from
measurements performed exclusively in phase-space it is possible to obtain va and, from it, to
recover the physical parameter b = −J = −va.

We consider now the laser ring-cavity map [19]

zt+1 = α eiθ zt + β. (7)

Here, zt = xt + i yt represents the complex electric field amplitude at the beginning of the t-th
passage around the ring cavity, α is the reflectivity of the partially reflecting output mirror,
while β is related to the laser input amplitude. The quantity θ is a complicated functional
of the laser field inside the cavity and, as usual [19], we take θ = ∆ − δ/(1 + |zt|2), where
∆ = 0.4 is the empty cavity detuning and δ = 6 is the additional detuning due to the nonlinear
medium. The Jacobian of the laser ring-cavity map is α2.

In the interval 0.786 < α < 0.86766 (0.70 < β < 1.22), we find the eigenvalue path of the
laser ring-cavity map to be well approximated by

β = 5.24182− 4.00875α − 1.41208α2. (8)

On this path, we consider the particularly interesting point p∗ = (α, β) = (0.84753, 0.83).
At this point there is not only a similar period-3 structure of fingers as before but also an
intricate finger-within-finger substructure. This additional substructure forms the basin of a
period-36 orbit, a surprisingly high period, multiple of the period of the basin “containing”
it. Figure 3 shows the double-finger structure. The period-3 orbit is located at the vertices of
the triangle. One of the points belonging to the period-36 orbit is (1.022987, 0.635068). The
unstable fixed point u is located near (x, y) = (1.7509,−2.1924). At p∗ we have α2 = 0.71830
while the dissipation measured from the period-3 fingers is 0.71828. The same dissipation
rate is obtained if one considers the period-36 fingers. Similar agreement is obtained for many
other parameter values obeying eq. (8). As for eq. (1), the eigenvalue path of eq. (8) may
contain subintervals for which no fingers exist. For these subintervals parameter recovery
becomes obviously impossible. The dissipation, however, will remain always connected to the
eigenvalue. A detailed account of the structure of the eigenvalue path (surface) for the laser
ring-cavity map will be presented elsewhere.

In conclusion, we have shown explicitly that physical parameters of dissipative dynamical
systems with constant Jacobian may be recovered from measurements done solely on the geo-
metrical structure of their phase-space. As is not difficult to realize, the fact that the Jacobian
is a constant implies the existence of an additional constraint in the system. This constraint



P. C. Rech et al.: Uncovering parameters from self-similar structures etc. 707

has the effect of introducing interdependencies between the total number of eigenvalues of
the problem, i.e. it lowers the number of independent eigenvalues. Therefore, one sees that
parameter recovery will be equally possible for any n-dimensional system having constraints
of any sort that act to effectively reduce the quantity of independent eigenvalues to less than
n eigenvalues.

While fingers exist over wide intervals of parameters, at present there is no theoretical
recipe allowing one to anticipate their existence and location for a given set of model param-
eters. By investigating systematically the dynamics along eigenvalue paths one may hope to
find useful clues to understand the mechanism responsible for fractal phase-spaces in physical
systems. It would be very useful to find algorithms capable of predicting their ubiquitous
presence. ∗ ∗ ∗
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