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Abstract. – We report the existence of a phenomenon of inheritance among periodic trajec-
tories of the quadratic map. Within the set Sk of all possible trajectories of period k we find
“mother” trajectories from which several “daughters” may be derived by simple polynomial
transformations. For example, from the six orbital points zi of a period-six mother we get three
additional period-six daughters as the zeros of the six cubics x3− 3x− zi = 0. Daughters might
have daughters. This stratification shows that periodic orbits are not necessarily independent
of each other. This fact could be of importance for decomposing certain sums involving sets of
periodic trajectories, particularly for trace formulas underlying semiclassical interpretations of
spectra in atomic physics.

The infinite set of periodic orbits embedded in chaotic attractors is fundamental for an
understanding of, for example, chaotic experimental time series and of chaotic dynamics in
general. The knowledge of the structure of periodic orbits [1] underlying physical attractors
can be used to determine basic ergodic properties such as dimension, Lyapunov exponents, and
topological entropy, properties that are basic tools to characterize physical processes. Periodic
orbits play a central role in the interpretation of quantum-mechanical spectra of systems whose
classical counterpart exhibit chaotic behavior [2, 3]. So, the investigation of periodic orbits is
a major issue nowadays [4].

An open problem in this field is the determination of the total number of isoperiodic
orbits, i.e. orbits sharing the same period, for generic dynamical systems. In some cases this
number is known to grow super-exponentially fast [5] but so far there is no general prescription
for estimating the abundant proliferation of periodic orbits for generic systems. Interesting
questions still awaiting solution exist also within the set Sk of all orbits of period k of a given
dynamical system, and the purpose of this paper is to report an unexpected and curious answer
to the following simple question: are the orbits in Sk always independent of each other? Or,
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equivalently, is it possible to find explicit examples of systems having periodic orbits which
although looking totally independent in numerical simulations are nevertheless interconnected?

This paper reports a novel phenomenon of “period inheritance” found in sets of isoperiodic
orbits. Inheritance is characterized by the existence of copious sets of orbits within orbits:
under suitable conditions, the knowledge of a single periodic orbit may be used to infer
and explicitly obtain many additional ones. Underlying inheritance there is an intricate set
of transformations among the numerical values of the points forming the various periodic
orbits, more precisely, an intricate set of automorphisms interconnecting pieces into which the
equations of motion can be decomposed.

Interdependencies among periodic orbits are hard to recognize in finite precision numerical
simulations before explicitly establishing the exact mathematical expression of the transforma-
tion. Our objective here is to illustrate their existence by presenting several explicit examples.
Inheritances could be of practical interest, specially for applications in atomic physics, implying
the possibility of rearranging orbit-dependent contributions in semiclassical sums needed for
calculations of energy spectra and density of states with, e.g., Gutzwiller’s trace formula [2,3].

Inheritance can be more easily understood in the context of a specific system. Therefore,
we illustrate it for the most familiar example of nonlinear dissipative system, namely for the
quadratic map [6]

xt+1 = a− x2
t , t = 0, 1, 2, · · · , x0 = x, (1)

with a = 2. This equation with the same parameter has been recently shown by Sinha
and Ditto [7] to be the heart of a lattice of coupled chaotic maps able to perform simple
computations, to emulate logic gates used in the construction of computers, to encode numbers
and to perform a whole variety of related arithmetic operations. It is important to emphasize,
however, that inheritance is by no means restricted to eq. (1). It also exists for a (quartic)
model of a ring cavity used in the construction of a certain type of lasers [8, 9], for the
paradigmatic (x, y) 7→ (a−x2+ by, x) Hénon map [10], including the Hamiltonian b = ±1 limits,
and for Hamiltonian (conservative) systems constructed ad hoc to investigate inheritance. Here
we concentrate on the simplest example.

When iterated, eq. (1) produces an infinite family of polynomials, which we denote by p̃k(x),
for k = 1, 2, . . ., k being the number of iterates needed to generate p̃k(x). All roots of this
infinite set of polynomials are real [11]. To exhibit the properties of the p̃k(x) more easily, we
write down the first few in extenso:

p̃1(x) = x2 + x− 2 = (x + 2) (x− 1), (2)
p̃2(x) = p̃1(x)(x2 − x− 1), (3)
p̃3(x) = p̃1(x)(x3 − x2 − 2x + 1)(x3 − 3x− 1), (4)
p̃4(x) = p̃1(x)(x2 − x− 1)(x4 + x3 − 4x2 − 4x + 1)×

×(x8 − x7 − 7x6 + 6x5 + 15x4 − 10x3 − 10x2 + 4x + 1). (5)

As might be seen, the zeros of every p̃k(x) contain all possible solutions of period k, including
trivial ones (the repeated factors), which are not proper orbits of period k because they already
appeared earlier as zeros of equations p̃`(x) with ` a divisor of k. For example, the trivial zeros
of p̃2(x) = 0 are x = 1 and x = −2, the fixed point solutions of p̃1(x) = 0. The zeros of
x2−x− 1 = 0 correspond to a genuine orbit of period two. The fixed points, p̃1(x), appear as
trivial factors in every p̃k(x), for k > 1.

All trivial periodicities may be discarded by polynomial division. Removal of trivial peri-
odicities generates a new family of polynomials, denoted by pk(x), containing by construction



j. a. c. gallas: nonlinear dependencies between sets etc. 651

all genuine motions of period k and no other periods:

p1(x) = (x + 2)(x− 1), (6)
p2(x) = x2 − x− 1, (7)
p3(x) = (x3 − x2 − 2x + 1)(x3 − 3x− 1), (8)
p4(x) = (x4 + x3 − 4x2 − 4x + 1)×

×(x8 − x7 − 7x6 + 6x5 + 15x4 − 10x3 − 10x2 + 4x + 1). (9)

The degree of every pk(x) is a multiple of k. Sometimes pk(x) decomposes quite naturally
into factors whose individual degrees are also multiples of k, the multiplicity indicating the
quantity of k-periodic orbits defined by their zeros. So, there are two distinct orbits of period
3, and three orbits of period 4, two of them defined by the zeros of the octic.

The families p̃k(x) and pk(x) are very simply related:

p̃1(x) = p1(x), p̃2(x) = p1(x) p2(x),
p̃3(x) = p1(x) p3(x), p̃4(x) = p1(x) p2(x) p4(x),
p̃5(x) = p1(x) p5(x), p̃6(x) = p1(x) p2(x) p3(x) p6(x),
p̃7(x) = p1(x) p7(x), p̃8(x) = p1(x) p2(x) p4(x) p8(x),

where we included a few additional decompositions that are easy to obtain but too long to
display here explicitly. From this last set of equations one easily recognizes an interesting fact:
The process of removing trivial periodicities resolved the several p̃k(x) into a natural “sub-
structure” pk(x) which can be labeled with the same numerical factors found by decomposing
the period k into prime integers. For example, p̃6(x) is divisible by p̃1(x), by p̃2(x), by p̃3(x)
and by p̃6(x) itself. If k is prime, then p̃k(x) is also prime in the sense that it is divisible only
by p̃1(x) and by p̃k(x) itself. In addition, for all prime periods k one finds that p̃k(x) may
always be decomposed into a product of two factors, p̃k(x) = p1(x) pk(x), where the trivial
“identity” factor p1(x) = (x + 2)(x − 1) corresponds to the well-known fixed points of the
dynamics.

In the above framework, the problem of determining periodic trajectories is equivalent
to the problem of characterizing the internal number-theoretical structure of the irreducible
factors composing pk(x), i.e. equivalent to determining the towers of numbers [12] in pk(x).
This one-to-one correspondence remains valid for other choices of parameter in eq. (1) and
for other one-dimensional algebraic dynamical systems. It also remains valid for multidimen-
sional systems after suitable elimination of variables. Once again, an understanding of the
arithmetical properties of the equations of motion is found to be a prerequisite to understand
their dynamics [13].

Now we illustrate inheritance for period six orbits by considering the zeros of p6(x) explicitly.
A simple computation shows that p6(x) consists of four factors:

p6(x) = Φ(1)
6 (x)Φ(2)

6 (x)Φ18(x)Φ24(x), (10)

where

Φ(1)
6 (x) = x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1, (11)

Φ(2)
6 (x) = x6 + x5 − 6x4 − 6x3 + 8x2 + 8x + 1, (12)

Φ18(x) = x18 − 18x16 + x15 + 135x14 − 15x13 − 546x12 + 90x11 +
+1287x10 − 276x9 − 1782x8 + 459x7 + 1385x6 − 405x5 − 534x4 +
+170x3 + 72x2 − 24x + 1, (13)
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Table I. – Approximate numerical values defining the 3 period-six trajectories τ
(j)
i , j = 1, 2, 3, gen-

erated by the roots zi of Φ
(2)
6 (x) = 0, obtained by solving the cubic x3 − 3x− zi = 0, eq. (18).

i zi τ
(1)
i τ

(2)
i τ

(3)
i

1 −1.911145 −1.990061 0.822574 1.167487

2 −1.652477 −1.960344 1.323371 0.636973

3 −0.730682 −1.842952 0.248687 1.594265

4 −0.149460 0.049861 −1.756443 1.706581

5 1.466103 −1.396473 1.938154 −0.541680

6 1.977661 1.997513 −1.085092 −0.912421

Φ24(x) = x24 + x23 − 24x22 − 23x21 + . . . + 101x3 − 180x2 + 12x + 1. (14)

Equation (14) will not be needed here. It may be generated with computer programs capable
of performing algebraic manipulations.

The four factors in eq. (10) are the minimum polynomials [12] which fix the arithmetic
properties characterizing all motions of period six. From their irreducibility we learn that
there are three different classes of period six orbits: From the nine possible orbits there are
i) two (different) orbits defined by sextics (i.e. over number fields of degree 6; see [12]), ii) three
over a field of degree 18, and iii) four over a field of degree 24. This is a precious information
for the analysis of the orbital substructuring but we do not go into this here.

All polynomials generated by iterating equations of motion are Abelian equations [14] by
construction. This means that their zeros might be expressed with a finite number of radicals.
In the present case their computation is greatly simplified because the four factors in eq. (10)
contain quadratic subfields, i.e. each one is a product of two factors, one with coefficients
of the form αj + βj

√
d, α, β, d rationals, the other with conjugate factors αj − βj

√
d. So,

Φ18(x) contains the subfield Q(
√

21 ) while Φ24(x) may be decomposed in three different ways:
over Q(

√
5 ), over Q(

√
13 ) and over Q(

√
65 ). The cubic factors of Φ(1)

6 (x) and Φ(2)
6 (x) are,

respectively,

ϕ1(x) = x3 − 1 +
√

13
2

x2 − x +
3 +

√
13

2
, (15)

ϕ2(x) = x3 +
1−√21

2
x2 − 1 +

√
21

2
x +

5 +
√

21
2

. (16)

Their conjugates ϕ1(x) and ϕ2(x) are obtained from the above ones by changing the sign in
front of all square roots. From these cubics, the problem of finding exact analytical expressions
for all orbital points of Φ(1)

6 (x) and Φ(2)
6 is simple to solve. The first column of table I shows

approximate numerical values for zi, the six zeros of Φ(2)
6 (x).

From the analytical expressions for the zeros it is not difficult to see that Φ18(x) inherits
its three orbits from the orbit defined by Φ(2)

6 (x). This is guaranteed by the identity

Φ18(x) = Φ(2)
6 (x3 − 3x). (17)

This identity means that once the zeros zi of the Φ(2)
6 (x) = 0 mother are obtained, three
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different daughters follow from the zeros of the six cubics

x3 − 3x− zi = 0. (18)

This solves Φ18(x) analytically. Approximate values for these zeros are shown in table I.
The transformation x3− 3x plays an even more interesting role when considered within the

set of the 56 orbits of period nine, defined by the following factors:

p9(x) = Ψ(1)
9 (x)Ψ(2)

9 (x)Ψ18(x)Ψ36(x)Ψ54(x)Ψ162(x)Ψ216(x). (19)

As for eq. (10), subindices indicate the degree of each polynomial. Once again, there are two
different factors of lowest degree, 9, their specific naming being immaterial here.

Period nine displays the first instance of “double inheritance”, shown in the second identity
below:

Ψ54(x) = Ψ18(x3 − 3x), (20)
Ψ162(x) = Ψ18(x9 − 9x7 + 27x5 − 30x3 + 9x) = Ψ18(y3 − 3y), (21)

where y = x3 − 3x and

Ψ18(x) = x18 + x17 − 18x16 − 18x15 + 134x14 + 134x13 − 531x12 − 531x11 +
+1198x10 + 1198x9 − 1519x8 − 1519x7 + 989x6 + 989x5 −
−265x4 − 265x3 + 20x2 + 20x + 1. (22)

Equations (20) and (21) show explicitly an extremely intricate and beautiful “bifurcation” sym-
metry interconnecting orbits of period nine due to unsuspected links (automorphisms) between
specific number-fields which slave the dynamics. From Φ(2)

6 (x) and Ψ18(x) we recognize a trend
that remains valid for other transformations: the polynomials generating upwardly heritable
orbits define a new family of reciprocal-looking polynomials, since they also contain pairs of
identical coefficients, simultaneously reducing their freedom but increasing their symmetry.

As a last example we present another inheritance-generating transformation, one which is
considerably more elaborate than those discussed so far. First there appear interconnecting
orbits of period ten, defined unambiguously by minimum polynomials of the following degrees:

p10(x) = Θ10(x)Θ20(x)Θ30(x)Θ80(x)Θ150(x)Θ300(x)Θ400(x). (23)

Altogether, there are 99 orbits of period 10. Among them inheritance appears through the
quintic,

Θ400(x) = Θ80(x5 − 5x3 + 5x), (24)

proving the existence a whole new class of nonlinear transformations. Notice that the map
f(x) = 2−x2 and the transformations u(x) = x3−3x and v(x) = x5−5x3+5x commute under
functional composition: f(u(x)) = u(f(x)), f(v(x)) = v(f(x)). In addition, u(v(x)) = v(u(x)).
A full discussion of inheritance-generating conjugacy relations will be presented elsewhere.

We conclude with a few remarks about the computations needed to obtain the results above.
The explicit determination of the aforementioned transformations required algebraic com-

putations with quite large polynomials involving huge numerical coefficients and related quan-
tities. For example, the discriminant of Θ400(x), in eq. (24), is 570041390, a number of 1119
digits that requires a considerable amount of time to compute. Similarly, classifying all 186
motions of period 11 requires dealing with highly peculiar and symmetrical numbers like, for
example, 3341683681, containing 2093 digits. The size of such numbers greatly increases as the
period increases.
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All interdependencies reported here are guaranteed to exist because it was possible to
establish their links analytically. However, it seems important to point out that in most
practical applications periodic orbits are determined numerically with finite precision. Finite
precision hinders the recognition of orbit interdependencies and only exact arithmetical work
seems capable of revealing their existence unambiguously.

Interdependencies among periodic orbits have consequences for the theoretical description of
dynamical systems. An interesting one is their implication for the understanding of the struc-
turing of invariant manifolds emanating from periodic orbits living in basin-boundaries and
ruling the dynamics [15]. Since there are interconnections among sets of orbits, it seems also
reasonable to expect interconnections between corresponding manifolds which, in principle,
would greatly reduce their geometrical structure. Thus, in some cases, manifolds that could
appear to be at first rather complicate might be, in fact, much simpler than anticipated. The
bad news is that, so far, we have been only able to find inheritance among orbits of relatively
high periods, where there is little hope anyway for describing the complicated interlacing
of manifolds. This is certainly the case for all typical low-degree paradigmatic models used
nowadays. However, it does not rule out the possibility of finding dynamical systems involving
just a few monomials of high degrees and capable of displaying inheritance already at low
periods and, as a consequence, an extraordinarily organized structure of manifolds.
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