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Abstract

Recent studies on growth rate of publicly traded companies revealed interesting scaling prop-
erties and universality. Based on the statistical analysis, di�erent models have been proposed to
cast light into the inner workings of companies responsible for the phenomena observed. The
purpose of this paper is to point out that the properties of the analysed economic data might
be present in a wider class of complex systems producing strongly correlated noisy time se-
ries. As an illustration, we report an investigation of the daily water-level 
uctuations of the
river Danube over a period of 87 years, as measured in Nagymaros, Hungary. The Danube data
shows similar characteristics to those seen in the company growth. This suggests that a universal
description of the statistics should exist for both systems. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In a series of recent papers [1–5], the scaling behaviour of growth of pro�t ori-
ented economic units was studied by means of modern tools of statistical physics.
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The empirical results for company growth were extracted from the Compustat
database, comprising all publicly traded United States manufacturing �rms within
the years 1974–1993 [1,2]. An extension of this study evaluated the 
uctuations
in gross domestic product (GDP) of 152 countries for the period 1950–1992 [5].
(For the sake of simplicity we use the term “�rm” for both of company and domestic
economy.)
It was found that the distribution of �rm sizes remained stable during the years

considered, i.e. the mean value and the standard deviation are approximately constant.
The distribution of sizes of new companies in each year is well approximated by
a log-normal form. Further, Stanley et al. [1] and Amaral et al. [2] found that the
distribution of annual (logarithmic) growth rates has an exponential shape, and the
spread in the distribution of rates decreases with increasing sales as a power law over
seven orders of magnitude.
In a subsequent paper, Buldyrev et al. [3] (see also Ref. [1]) proposed models

intended to shed light into the behaviour observed with the scaling approach. They
�rst studied a model in which the growth rate of a company is a�ected by a tendency
to retain an “optimal size”. Such modelling leads to an exponential distribution of
the logarithm of the growth rate, in agreement with the empirical results. Then, a
hierarchical tree-like model of a company was studied [3]. Two parameters of the
model were related to an exponent �, which describes the dependence of the standard
deviation of the distribution of growth rates on size. One of the main results is that
�=−ln�=ln z, where z de�nes the mean branching ratio of the hierarchical tree, and
� is the probability that the lower levels follow the policy of higher levels in the
hierarchy. Note that the exponent value obeys � ∈ [0; 0:5] for all probabilities and
branching ratios, whenever scaling is present, and the empirical value for �rms is
�emp ≈ 1

6 . The distribution of growth rates of this hierarchical model reproduced the
exponential form too.
Amaral et al. introduced a third model to explain the same scaling behaviour of

company growth [4]. Here a system of interacting subunits (�rms) are studied. These
�rms have a complex internal structure, with each �rm composed of subunits (divi-
sions). The size of the subunits evolves according to a random multiplicative process,
and the growth rates of di�erent divisions are independent of one another. Interaction
among the units is treated in a “mean �eld” approximation through the imposition of
a minimum size for the subunits. The size statistics is in agreement with the empirical
data, again.
The robustness of the above results is remarkable: Three models of rather di�erent

spirit reproduced the same statistics. This suggests that other complex systems may
show the same behaviour, and no special properties of interacting economic units are
necessary for a proper description. Motivated by this observation, we repeated the same
statistical analysis on a completely di�erent time series that was available to us: Daily
water-level 
uctuations of the river Danube recorded between January 1, 1901 and
December 31, 1987. For this data set the “growth rate” can be de�ned as the ratio
ht+1=ht , where ht is the water level on day t.
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Surprisingly, our time series produces curves (shown below) displaying the same
three basic characteristics which were extracted in Refs. [1–5]:

(i) The data displays similar exponential probability density distribution and gen-
erates the same typical tent-shape curves in double logarithmic plots.
(ii) The higher the initial value of a given bin, the narrower the distribution.
(iii) Tent widths also scale with the initial value producing a characteristic exponent,

in our case with � = 0:58± 0:03.
Our data set has a very di�erent nature than the economic data in Refs. [1–5], and,

in our opinion, none of the aforementioned models can be installed easily to support
a similar interpretation.
It is the purpose of the present paper, �rst, to characterize shortly our data, to report

the results found by repeating the analysis discussed in Refs. [1,2,4,5] and, �nally,
to present our conclusions o�ering an interpretation of the underlying characteristics
that we believe to be common characteristics of both sets of data as well as probably
many others. We emphasize here that the focus is not on the analysis of water level

uctuations, therefore we do not study the “classical” scaling properties of river data
observed �rst by Hurst [6].

2. The Danube data: standard analysis

The basic data available to us is a set of 31 863 measurements providing daily records
of the water level of the river Danube, as observed at Nagymaros, north of Budapest,
between 1 January 1901 and 31 December of 1987 [7]. The water level is measured
in cm with respect to a �xed reference level, as usual everywhere.
The data is stored as a two-dimensional array to which we associate the height

variable hk(t), where the subscript k, 19016k61987, refers to the year of the mea-
surement, and t, 16t6365, refers to the day of the measurement within a given year k.
A subset of this data, displaying the �rst 20 000 measurements, is shown in Fig. 1. As
seen from the �gure, the time series of Fig. 1a 
uctuates bounded around a stable aver-
age (of 236 cm), as it must be for obvious reasons: The absolute minimum is limited by
the dry river bed, and the absolute maximum by the height of the dams along the river.
From the individual water levels hk(t) we compute the 87-year average height H (t)

for every day t = 1; 2; : : : ; 365:

H (t) =
1
87

1987∑
k=1901

hk(t) : (1)

The 366th day of the leap years (29 February) is discarded. The yearly average is
shown in Fig. 1b. As one recognizes easily from this �gure, there is a strong seasonality
in the data, which is a common characteristic of the rivers in the region [8]. The steep
rise of the average water level in Spring is a simultaneous result of the snow-melt in
the Alps and in the Carpatian mountains, and the intense rainfalls in the season. At the
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Fig. 1. (a) 20 000 data of daily water level of the river Danube, measured at Nagymaros from 1st of
January 1901 [7]. (b) Seasonality of the average daily water for one year [see Eq. (1)]. (c) Probability
density distribution P(�h) of the water level 
uctuations �h [see Eq. (2)]. Note that the vertical scale is
logarithmic. (d) Power spectrum of the detrended time series obtained by the standard FFT method. Dotted
lines show two scaling regimes, at low frequencies (f¡ 0:05 day−1) the characteristic exponent is 1:2±0:1,
at large frequencies (f¿ 0:1 day−1) the exponent value is 3:3± 0:1.

measuring station Nagymaros, the average water level variation is about 1.5 m while
peak-to-peak variations may be as high as 7 m, depending on the year.
To overcome the natural nonstationarity of the data series due to seasonal trends,

we have determined the 
uctuations of the daily water level �h with respect to the
daily average over 87 years H (t) as

�h(t) = hk(t)− H (t) : (2)

Similar to Eq. (1), the leap days are omitted. The histogram (or empirical probability
density distribution) P(�h) for the 
uctuations �h is shown in Fig. 1c. The asymmetric
peak is clearly far from being a Gaussian, and a log-normal �t works only for the tails,
too. We have not found a simple function which would give a satisfactory �t, the best
result was achieved by the convolution of nine partial distributions having exponential
shape. Fig. 1d shows the power spectrum S(f) of the 
uctuations �h(t) obtained by
a standard FFT algorithm. The shape of the curve suggest scaling for two di�erent
frequency ranges. At low frequencies (f¡ 0:05 day−1) the characteristic exponent is
1:2 ± 0:1, at large frequencies (f¿ 0:1 day−1) the exponent value is 3:3 ± 0:1. The
breakpoint around f ≈ 0:05–0:06 day−1 (i.e. t ≈ 17–20 days) is probably associated
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with the typical length of the time intervals in the dry summer and winter seasons,
when the water level decreases monotonously as a consequence of low water supply.

3. Statistics of the rate of changes

The key quantity in the statistical analysis of the growth of companies [2,3] is the
one year growth rate, which is de�ned in economics as the size of a given company
with respect to some measure (sales, assets, number of employees, etc.) divided by the
size in the preceding year. We can de�ne an analogous quantity “growth rate” or rather
“rate of change” for our time series as the ratio of the water level between consecutive
days, ht+1=ht and, associated with it, the logarithmic rate of change r = ln(ht+1=ht).
In the following we repeat the analysis step by step following Stanley et al. [1,2] to
show that the rate of change in the case of water levels behaves very similarly to the
growth rate that was observed for companies.
At �rst, we determine the conditional probability density distributions P(r|h0) of the

one day logarithmic rate of change r with a given initial height h0. Fig. 2a shows the
result for three di�erent initial values. The characteristic tent-shape seen in the �gures
suggests that the distribution has an exponential form

P(r|h0) = 1√
2�(h0)

exp

(
−
√
2|r − �r(h0)|
�(h0)

)
; (3)

where �(h0) and �r(h0) are, respectively, the width and the average value, both quantities
depending on the given bin centred at h0. The smaller h0, the larger the width �(h0),
similar to the company data [2,1]. Note that the centre of the partial distributions
�r(h0) has typically a small negative value for the river, while slight positive values
characterise the company data [3]. Fig. 2b shows how the width �(h0) depends on the
initial value h0. For large h0 values the scaling breaks down, but for h06300 cm a
power-law assumption gives a satisfactory �t (also shown in the inset of Fig. 2b):

�(h0) ∼ h−�0 ; � = 0:58± 0:03 : (4)

Fig. 3 shows the rescaled probability density distribution P′ =
√
2�(h0)P(r|h0) as a

function of the rescaled logarithmic rate of change r′ =
√
2[r − �r(h0)]=�(h0) for the

three sets of data shown in Fig. 2a. All three data sets collapse into a single curve

P′ = exp(−|r′|) ; (5)

as predicted by Eqs. (3) and (4).
The characteristic di�erences between the statistics of company growth and water

level changes can be summarized as follows. Firstly, the centre of the partial dis-
tributions �r(h0) is a small negative value for the Danube, while it is positive for the
company growth. Secondly, the scaling exponents are di�erent; �=0:58 for the Danube,
and � ≈ 1

6 for the �rms. Thirdly, the systematic deviation from the ideal exponential
shape de�ned by Eq. (5) has an opposite sign: For r′¿ 0 the slopes of the rescaled
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Fig. 2. (a) Probability density distribution of the one day logarithmic rate of change ln(ht+1=ht) for three
di�erent bins centred around h0=50; 100; and 370 cm. Each bins have the same spread h−20¡h0¡h+20
cm. The distributions have an exponential shape [Eq. (3)] centred around small negative values. (b) Width
of the exponential distributions �(h0) [see Eq. (3)] as a function of di�erent initial values h0. The solid
line is a power-law �t for the data points denoted by heavy dots, also shown in the inset. For large initial
values (h0¿ 300 cm) the scaling breaks down (empty circles). The exponent value is �= 0:58± 0:03 [see
Eq. (4)].

data for the companies seem to be larger than predicted by Eq. (5) (cf. Fig. 3 of [2]),
whereas for the Danube data the same is visible but for r′¡ 0.

4. Discussion

It is obvious that the two systems compared above are of fundamentally di�erent
nature. Nevertheless, the similarities in the statistics of rate of changes suggest the
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Fig. 3. Rescaled probability density distribution P′=
√
2�(h0)P(r|h0) as a function of the rescaled logarithmic

rate of change r′ =
√
2[r − �r(h0)]=�(h0) for the data shown in Fig. 2a. The data approximately collapse

upon the universal curve Eq. (5) (thin solid line).

existence of some common features underlying both sets of data. One of the common
characteristics is that both discrete time series have the form of

xt+1 = xt ± �t ; (6)

where �t is the change of the quantity xt at time t. The logarithmic rate of change
obeys the series expansion

rt = ln
(
xt+1
xt

)
= ln

(
1± �t

xt

)
≈ ± �t

xt
− 1
2

(
�t
xt

)2
± 1
3

(
�t
xt

)3
· · · ; (7)

if �t=xt.1 holds. This is not a strict restriction, because relative changes can be small
in many random-walk-like processes, such as the growth of companies or water level

uctuations. Eq. (7) means that the statistics of logarithmic rate of changes is dominated
by the statistics of small relative changes. Let us discuss a few trivial examples.
The simplest case is when the variation of x does not depend either on the time t

or the value of x. This is a one-dimensional discrete random walk of stepsize �=�x,
i.e. xt+1 = xt ±�x. For any particular value of x far enough from the origin, the width
of the logarithmic rate of change “distribution” �r scales with x like �r =�x=x ∼ x−1.
The other limiting case is when the variation of x is strictly proportional to x as
xt+1 = xt(1 ± c), where c is a small positive constant. In this case the width of the
logarithmic rate of change “distribution” is �r = c ∼ x0 for c. 1. It is easy to see
that any scaling exponent can be realized between zero and one, if we assume that the
variation obeys a power law

�= cx� ; (8)
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Fig. 4. (a) Partial probability density distribution of logarithmic growth rate ln(xt+1=xt) for a Gaussian random
walk, where the standard deviation of the stepsize depends on the distance from the origin as �(x) ∼ x0:4.
Statistics for three di�erent bins of unit width centred around x0 = 20; 50; and 100 are shown. (Note the
only values xt ¿ 1 are evaluated for obvious reasons.) (b) Standard deviation of the distribution �G(x0) as
a function of bin centre x0 for the same process. The solid line is an exact power law of exponent −0:6.

where 06�61 and c.1. For small relative variations we get for the width

�r = cx�−1 : (9)

This consideration holds also if the variation � has no strict functional dependence
on x, but it is a random variable of a given probability density. We should assume
only that the average 〈�x〉= 0, and the standard deviation of it scales as �(x) ∼ x�. It
is also clear that the shape of the probability density function does not play any role in
scaling. In order to illustrate this fact, we generated a random walk xt+1=xt±�(xt) with
Gaussian random increments �(xt) of zero mean and standard deviation �(xt)=0:1x0:4t .
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Fig. 5. Average daily absolute change 〈�h〉 = 〈|ht+1 − ht |〉 as a function of actual water level h0 for the
Danube data on a double logarithmic scale.

The statistics for the logarithmic growth rate r = ln(xt+1=xt) is shown in Fig. 4. As
expected, the shape is Gaussian for all bins (of unit width, particularly), and the scaling
law Eq. (9) is restored.
Finally, we show in Fig. 5 the average daily changes as a function of water level

for the Danube data. The statistics is not perfect, however two scaling regimes can
be resolved with di�erent exponents. The numerical values support our considerations:
The evaluation of daily variations gives the same information as the statistics for rate
of changes.
The above results illustrate that the characteristic patterns discovered by Stanley

et al. [1] seem to be a general property of a wider class of phenomena than that of
the economic time series. Strong time correlation is necessary to produce growth rate
distributions centred around 1, however, this condition is automatically ful�lled for
random walk-like processes of limited stepsize. Furthermore, if the amplitude of the

uctuations is limited, the partial distributions around di�erent initial values must have
di�erent widths: The smaller the denominator, the larger the width. We have shown
that scaling width for partial growth rate distributions can be a simple consequence of
scaling step sizes. In our opinion, as is the case for water level variations and possibly
of other sets of data also, see e.g. [9,10], the data presented by Stanley et al. manifests
the characteristics of many strongly correlated stochastic processes.
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