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Conjugacy classes and chiral doublets in the Hénon Hamiltonian repeller
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Abstract

Conjugacy classes hidden behind orbital symmetries under reflection are brought to light through the recognition of the fundamental role played
by certain algebraic clusters underlying orbital equations of the area-preserving Hénon map, a discrete proxy of open Hamiltonian systems that
exhibit chaotic scattering and transport. Specific number-fields ruling orbital coordinates are shown to slave large sets of orbits into being neces-
sarily nonlinearly coupled. Particularly remarkable is the conjugacy class characterized by non-self-symmetric chiral doublets which completely
dominates at higher periods.
© 2006 Elsevier B.V. All rights reserved.
1. Introduction

A long-outstanding problem in classical mechanics and sta-
tistical physics, with far-reaching and important applications in
several areas, is that connected with studying symmetries and
asymmetries of periodic motions in phase-space. This problem
was and still is one of the central problems and active fields
of research in Celestial Mechanics as emphasized in very re-
cent investigations of motions in planetary and satellite systems
[1–4]. Apart from these technologically important applications,
the study of symmetries and orbits in area- and orientation-
preserving maps has also helped to clarify intricate dynamical
processes like, for example, the emergence of infinitely many
symmetric periodic orbits through saddle-node or equiperiod
bifurcation [5] and the dynamics of open conservative systems,
i.e., conservative systems having unbounded phase-space as,
e.g., “leaking” Hamiltonian systems [6].

Here we study orbital symmetries and asymmetries com-
puted analytically and systematically for the Hamiltonian (area-
preserving) b = −1 limit of the Hénon map

(1)xt+1 = a − x2
t + bxt−1.
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This map is a well-known discrete proxy of open Hamiltonian
systems that exhibit chaotic scattering and transport [7]. It was
found very early to reproduce experimental results involving
ferromagnetic resonance in yttrium iron garnet [8].

Our key result is the discovery of a natural segregation of
orbits into three conjugacy classes when one considers orbital
symmetries with respect to a reflection in phase-space about the
y = x symmetry line, as defined in Table 4. As we argue below,
under such reflection every periodic orbit (cycle) falls into one
of three possible classes:

D: diagonal cycles: self-conjugate periodic orbits with points
on the diagonal, as illustrated in Fig. 1 below.

N : non-diagonal cycles: self-conjugate periodic orbits without
points on the diagonal, shown in Fig. 1 below.

C: chiral doublets: pairs of non-self-conjugate cycles that map
into each other, illustrated in Figs. 2–4 below.

This classification is independent of the control parameter a.
Orbits are specially interesting for a > ah, where ah �
5.69931 . . . , since beyond this value there is a complete Smale
horseshoe [9] and all orbits are real.

Formally, the conjugacy classes are defined by the three fac-
tors composing Eq. (5). The next section explains this equation
and presents a methodology which allows factors to be com-
puted systematically for arbitrary period.

http://www.elsevier.com/locate/pla
mailto:aendler@if.ufrgs.br
mailto:jgallas@if.ufrgs.br
http://dx.doi.org/10.1016/j.physleta.2006.04.042


2 A. Endler, J.A.C. Gallas / Physics Letters A 356 (2006) 1–7
2. The polynomials Pk(x) and Sk(σ )

It is always possible to reduce the problem of finding the
periodic orbits of dynamical systems of algebraic origin of any
dimension to the much simpler problem of finding the roots of
a fundamental pair of univariate polynomials, say,

(2)Pk(x) and Sk(σ ),

indexed by the orbital period k and involving only the physical
parameters of the model [10–12]. This pair of polynomials pro-
vides exact analytical expressions encoding simultaneously all
k-periodic orbits as a function of the sum σ of orbital points.
We now summarize briefly the procedure employed to obtain
the polynomials explicitly. The general procedure was intro-
duced in Ref. [10] and applied in Refs. [11,12]. The generic
origin of periodicity is discussed in Ref. [13].

First, from Eq. (1) note that a generic period-k orbit is de-
fined by a set {x�} of numbers containing k coordinates x� of
the orbit, which for convenience we label from � = 1 to � = k.
These k coordinates may be used to construct a polynomial of
degree k defining the orbit

(3)Pk(x) =
k∏

�=1

(x − x�).

Now, recall a basic text-book result about the relation between
roots and coefficients of polynomials: in any polynomial of de-
gree k, the negative of the coefficient of the term of degree k − 1
is the elementary symmetric function representing the sum of
all roots, in our case, the sum of all orbital coordinates x�. We
call this sum σ and, by eliminations with the help of Eq. (1), ex-
press all other coefficients of x in Pk(x) as functions of σ . After
all eliminations Pk(x) is a polynomial involving three quantities
only: x, σ and the control parameter a. For explicit examples,
see Eqs. (6), (15) and (16).

The process of replacing all coefficients of Pk(x) by func-
tions of σ produces an important additional polynomial, a con-
straint equation for σ , denoted by

(4)Sk(σ ) = 0.

This polynomial involves only σ and the parameters of the
model, a in the present case. For explicit examples, see Table 1
and, more generically, Eq. (5). The roots σ� of Eq. (4) are the
numerical values of σ needed in the corresponding polynomial
Pk(x) to fix each individual orbit.

Table 1
The factors composing Sk(σ ) and defining the two classes of self-symmetric
orbits, the only classes which exist for periods k � 5. The factors are valid for
arbitrary values of a

k Sk(σ )

1 D1(σ ) = σ 2 + 2σ − a

2 N2(σ ) = σ − 2
3 D3(σ ) = σ 2 − 2σ + 2 − a

4 D4(σ ) = σ , N4(σ ) = σ 2 − 4a

5 D5(σ ) = σ 6 − 2σ 5 − (11a + 12)σ 4 + 12(2 + 3a)σ 3

+ (20a + 36 + 19a2)σ 2 − 2(a + 6)(17a + 2)σ − 9a3

+ 88a2 + 56 + 28a
We remark that our choice of expressing all coefficients of
Pk(x) as functions of the sum σ of orbital points is motivated by
the interpretation of σ as a sort of mean-field signature of each
individual orbit. As pointed out in Ref. [10], any coefficient
of Pk(x) could be used to represent all remaining coefficients
equally well, since all coefficients are interconnected by the
well-known elementary symmetric functions considered first by
Girard and by Newton [14], constructed with the roots of Pk(x).
Two particularly fruitful parameterizations are σ , the sum of the
orbital points, and π , their product. Here we focus only on σ .

In the next section we show that Sk(σ ) is formed by cer-
tain characteristic factors and discuss their distinct nature. As
indicated in Table 1, up to period k = 5 the polynomial Sk(σ )

contains only two types of factors, namely Dk(σ) and Nk(σ ).
The meaning of this notation is also explained in the next sec-
tion.

3. The factors Ck , Dk , Nk and the classes

The purpose of this section is to show that the polynomials
Sk(σ ) of Eq. (4) emerge automatically decomposed into three
factors, namely,

(5)Sk(σ ) = C2
k (σ )Dk(σ )Nk(σ ),

and that these factors are the mathematical objects character-
izing the clusters responsible for the three algebraic conjugacy
classes. The fact that the roots σ� originating from each cluster
are number-theoretically conjugate quantities justifies the name
conjugacy classes. From an algebraic point of view, this con-
jugacy is the key theoretical novelty. It implies strong orbital
correlations and interdependencies.

To fix ideas, consider the problem of determining explicitly
the exact analytical expressions for all possible orbits of period
k = 4 of the Hénon map, Eq. (1). The solution of this problem
is trivial because Ref. [10] contains the solution for arbitrary
a and b. Substituting b = −1 in the general expressions one
obtains the polynomial P4(x) = P4(x, σ ) which, through the
parameter σ , encodes simultaneously all possible period-4 or-
bits:

P4(x) = x4 − σx3 + (
σ 2 + 2σ − 4a

)
x2/2

− (
σ 2 + 6σ − 10a

)
σx/6 + σ 4/24

(6)+ σ 3/2 − 2aσ 2/3 + a2 − aσ.

In the present case [10], σ is a root of the cubic

(7)S4(σ ) = σ
(
σ 2 − 4a

)
.

The degree of S4(σ ) tells that Eq. (1) contains altogether three
period-4 orbits, one for each root of S4(σ ), namely −2r,0,2r,
where r = √

a. When substituted into P4(x), these roots gener-
ate three orbits, respectively,

(8)P4,1(x) = (
x2 − a − 2r

)
(x + r)2,

(9)P4,3(x) = x4 − 2ax2 + a2 = (
x2 − a

)2
,

(10)P4,7(x) = (
x2 − a + 2r

)
(x − r)2.
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Fig. 1. The two distinct classes of orbits self-symmetric under reflection about
the symmetry diagonal y = x, here of period four and for a = 6 (complete
Smale horseshoe). Orbits 4,1 and 4,7 are of class N : have no points on the
diagonal. Orbit 4,3 is of class D: has points on the diagonal.

These orbits are shown in Fig. 1 for a = 6, the smallest in-
teger where a complete Smale horseshoe exists [12]. All three
orbits in Fig. 1 are clearly self-symmetric under reflection about
the y = x symmetry diagonal and come in two flavors: with
or without points on the axis. Obviously, self-symmetric orbits
with even periods k cannot have an odd number of points on the
diagonal. Self-symmetric orbits may have points on the symme-
try diagonal or on the time-reversal symmetry parabolas shown
in the figure.

Self-symmetric orbits are the only ones observed up to pe-
riod 5 and Table 1 summarizes the specific expressions Sk(σ )

for k � 5. The simple two-factor structure of Sk(σ ) found for
periods k � 5 changes when k � 6 by the appearance of an ad-
ditional factor, Ck(σ ), containing all chiral doublets, as we now
show.

For arbitrary values of a explicit calculations show that there
are nine period-6 orbits and that

(11)S6(σ ) = C2
6(σ )D6(σ )N6(σ ),

where

(12)C6(σ ) = σ − 2,

(13)D6(σ ) = σ 2 + 4σ − 4a,

N6(σ ) = σ 5 + 2σ 4 − 4(5a + 4)σ 3 + 8σ 2a

(14)+ 4
(
16a2 + 12a + 9

)
σ + 128a2 − 96a + 72.

As before for P4(x), in the Hamiltonian case (b = −1) and
for σ = 2 a general expression available in the literature [11]
simplifies to

P6(x) = [
x3 − (1 + r)x2 − ax + a(1 + r) − 1

]

(15)× [
x3 − (1 − r)x2 − ax + a(1 − r) − 1

]
,

Fig. 2. The chiral doublet of period 6 defined by the roots of Eq. (15), here for
a = 6. Numbers refer to the usual binary labeling (shown on the bottom) and
decimal equivalent (top). These orbits are non-self-symmetric: under reflec-
tion about the symmetry line y = x they map into each other. Chiral orbits may
never contain points on the time-reversal symmetry parabolas or on the symme-
try line y = x because the transformation (x, y) �→ (y, x) must send one orbit
into the other.

Fig. 3. The two chiral doublets of period 7 for a = 6. Under reflection about the
y = x diagonal the orbits 7,11 and 7,23 map into their partners 7,13 and 7,29,
and vice versa.

where r = √
a − 3 is the relative-quadratic irrationality break-

ing the sextic generically. A pitchfork bifurcation occurs for
a = 3, when a stable class D orbit looses stability in favor of
a chiral doublet, stable for 3 < a < 3.00795 . . . . The roots of
Eq. (15) define the coordinates of the chiral doublet shown in
Fig. 2. Individual orbits are obtained by selecting the proper in-
phase combination of roots needed to start iterating Eq. (1). The
stability of the doublet is ruled by degenerate σ values, identi-
cal for both orbits. Thus, chiral doublets are always both stable
or both unstable, depending on a. The factors Ck(σ ) of Sk(σ )

define the specific values of σ leading to chiral doublets.
Analogously, for period 7 we compute all 18 orbits and a

decomposition S7(σ ) = C2
7(σ )D7(σ ) where D7(σ ) is a poly-

nomial of degree 14 and C7(σ ) = σ 2 − 2σ − a. Thus, there are
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Fig. 4. The six non-self-symmetric period-8 chiral duos defined by the roots of Eq. (A.2) in Appendix A. Proper in-phase initial points are given in Table 4 in
Appendix A. Note the conspicuous presence and evolution of the doublets with the same labels and similar shapes as those in Figs. 2 and 3. The sum σ of the orbital
coordinates increases from left to right (see Table 4). Points of chiral orbits may never lie on the symmetry diagonal or on the time-reversal symmetry parabolas.
Note the inner reflection symmetries of conjugate binary labels.
two chiral doublets and 14 self-symmetric orbits with points on
the diagonal. The roots σ� of C7(σ ) generate a pair of chiral
doublets when substituted in

P̄7(x) = x7 − σx6 − (3a − 2σ)x5 − (
2a − (3a − 4)σ − 4

)
x4

+ (
3a2 − 2(2a − 1)σ + 1

)
x3

+ (
4a2 − 10a − (

3a2 − 8a + 1
)
σ − 2

)
x2

− (a − 1)
(
a2 − 2aσ + a + 2

)
x

(16)− 2a3 + 6a2 + 2a + 3
(
a3 − 4a2 + a − 2

)
σ.

One doublet is obtained for

(17)σ7,11 = σ7,13 = 1 + √
a + 1,

while the conjugate doublet follows from the conjugate σ ,
namely,

(18)σ7,23 = σ7,29 = 1 − √
a + 1.

Fig. 3 shows the orbits composing the period-7 doublets. Note
that all four orbits are compactly encoded by σ in a single poly-
nomial.

For period 8 we obtain the decomposition S8(σ ) = C2
8(σ ) ×

D8(σ )N8(σ ), defining 6 orbits of class D, 12 of class N , and
6 chiral doublets defined by

C8(σ ) = σ 6 − 4σ 5 − 4(2a + 1)σ 4 + 16(2a + 1)σ 3

(19)+ 16a(a + 1)σ 2 − 64a(a + 1)σ − 16.

The polynomial W8(x) encoding simultaneously all period-8
doublets is given in Appendix A.

Fig. 4 shows the six period-8 doublets, two of them similar
to those in Fig. 3 but with an extra orbital point. Of course, there
are also period-8 orbits of class D and N , but the polynomials
defining them are too big to be listed here.

The systematic seems now well-established and was corrob-
orated by computing with ad hoc computer algebra routines
all pairs Pk(x) and Sk(σ ) up to period k = 20. Again, and for
Table 2
Partitions of the total number Mk of period-k orbits, defined in Eq. (20), into
the number of orbits composing each class. The rightmost column shows the
percentage of chiral orbits

k Mk Ck Dk Nk %

1 2 0 2 0 0
2 1 0 0 1 0
3 2 0 2 0 0
4 3 0 1 2 0
5 6 0 6 0 0
6 9 2 × 1 2 5 22.2
7 18 2 × 2 14 0 22.2
8 30 2 × 6 6 12 40.0
9 56 2 × 14 28 0 50.0

10 99 2 × 30 12 27 60.6
11 186 2 × 62 62 0 66.7
12 335 2 × 127 27 54 75.8
13 630 2 × 252 126 0 80.0
14 1161 2 × 500 56 119 84.9
15 2182 2 × 968 246 0 88.7
16 4080 2 × 1860 120 240 91.2
17 7710 2 × 3600 510 0 93.4
18 14532 2 × 6902 238 490 95.0
19 27594 2 × 13286 1022 0 96.3
20 52377 2 × 25446 495 990 97.2

arbitrary values of the control parameter a, Sk(σ ) always de-
composes systematically as represented in Eq. (5). The specific
number of orbits found in each class is summarized for k � 20
in Table 2.

From the results above one sees that the roots of the fac-
tors Ck , Dk , Nk of Sk(σ ) define the orbits in each class, C

standing for chiral, D for diagonal and N for non-diagonal
orbits. Symmetry under reflection about the y = x diagonal
forbids the existence of class N for odd k, i.e., Nk(σ ) ≡ 1
for odd k. Symmetry also imposes that for even (odd) peri-
ods class D orbits will have an even (odd) number of points
on the diagonal. We can find no reason for the classes not to
remain well-defined as the period further grows. The specific
number-fields (base fields) defined by the σ -factors in Eq. (5)
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are the strong links slaving orbits into clusters and sums of or-
bital points into classes.

It is known that in the limit in which all possible horseshoe
orbits exist, binary Smale horseshoe labels are useful because
they assign a unique name to each periodic point and facilitate
counting cycles. For instance, the number Mk of cycles of pe-
riod k is related to the 2k cycle points by the Möbius inversion
formula

(20)Mk = 1

k

∑

d|k
μ(k/d)2d,

where μ(n) is the Möbius function [15], and the sum runs over
all divisors d of k. Table 2 summarizes the partition of the
Mk orbits as obtained by computing all of them explicitly. For
prime k there are 2(k+1)/2 − 2 orbits of class D. The partition
of Mk into the number of orbits in each class is a nice challenge
in combinatorial analysis.

The decomposition summarized by Eq. (5) and the over-
whelming abundance of “handedness” manifest in Table 2 are
our main theoretical results. They are both independent of the
numerical value of the control parameter a. The remarkably
strong dominance of chiral (asymmetric) orbits seen in Table 2
as the period grows contrasts sharply with recent remarkable
findings concerning the signature of time-reversal symmetry
of polynomial automorphisms over finite fields, an exceptional
context where symmetric orbits dominate statistics over asym-
metric ones [16].

4. Final comments

The investigation of conservative dynamical systems with
two degrees of freedom has a long history [17–24]. Birkhoff
[18,19] observed that conservative dynamical systems with two
degrees of freedom may be decomposed generically into a pair
of involutions. These involutions were first exploited by de Vo-
gelaere [20]. For instance, the reversing involution, or rever-
sor, R(x, y) = (y, x), may be conveniently used to segregate
orbits into two broad classes: symmetric and non-symmetric
orbits. Until now the emphasis has been by far in the study
of symmetric orbits, the easiest ones to find numerically. But
non-symmetric orbits have been also occasionally mentioned in
the literature, mostly rather briefly. For instance, after summa-
rizing de Vogelaere’s classification [20] of symmetric periodic
orbits based on the involution R, Devaney [21] remarks on p. 96
that “The remaining [orbits] are called non-symmetric. They al-
ways occur in pairs γ and R(γ ).” A whole section dedicated to
asymmetric orbits appears in the very nice paper by Jiménez-
Lara and Piña [23] dealing with Störmer’s problem, namely the
problem of finding the orbits for an electric charge in a mag-
netic dipole field [25].

The general non-self-symmetric involutions and chirality
(mirror symmetry of non-self-symmetric orbital pairs) dis-
cussed here do not seem to have been observed before.1 These

1 We are indebted to C. Mira for kindly pointing out that our involutions may
be described in a generic symbolic plane with the help of the one-dimensional
involutions are different from the popular involutions normally
connected with time-reversal symmetries and should not be
confused with them. The connection between involutions and
factorizations is the subject of a separate work [29]. Generi-
cally, factorization is a very rare event in algebraic geometry
and in this sense the orbital segregation summarized by Eq. (5)
is rather surprising.

Concerning generality, we recall a result of Friedland and
Milnor stating that every polynomial automorphism that is not
dynamically trivial is conjugate to a composition of generalized
Hénon transformations [30]. Thus, we believe that the results
reported here could be also valid for physical systems ruled by
rational equations of motion, polynomials in particular. This,
however, remains to be investigated more closely. The study
of planar polynomial automorphisms whose inverse is also a
polynomial map, the situation discussed here, is of great inter-
est for applications in physics since reversibility is frequently
associated with Hamiltonian systems and, more generally, to
conservative dynamics. Another interesting open question is the
possible application of the algebraic conjugacy of orbits to the
effective computation of the topological entropy, to assess the
complexity of Hénon and Hénon-like systems along the lines of
recent works [31–33].

From a physical point of view, Eq. (5) may be regarded as
implying two different levels of orbital organization. First, there
is a sort of coarse-grained macroscopic upper level of orbital
organization manifest by the decomposition of Sk(σ ) into the
classes C, D, and N . Then, underlying each individual class
there is a microscopic level responsible for the selection of
highly symmetric number-field conjugacies and very delicate
balance between them, manifest in the coordinates of orbital
points of individual orbit. This latter level is the lowest level
possible from a mathematical point of view: it is the “atom-
ic” number-theoretic level responsible for exquisite symmetries
and conjugacies between the individual numbers defining or-
bital coordinates.

So far, symmetric orbits have overwhelmingly dominated at-
tention in the literature. From Table 2 it is possible to get the
impression that the rarity of asymmetric orbits at low periods
could explain their relative oblivion. This work contributes to
reestablish the balance by shedding light on the crowded sets
of asymmetric orbits, by far the dominating class of orbits at
higher periods. At any rate, symmetric orbits are extremely use-
ful but quite exceptional.
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Appendix A

This appendix records the polynomial cluster defining the
exact orbital coordinates simultaneously for all six chiral dou-
blets in Fig. 4. This polynomial results from straightforward
but very long computations and is given in Table 3. It contains
many number-theoretical features, in particular it is composed
by relatively big primes.

For arbitrary values of a, the 12 period-8 chiral orbits are
entangled among the roots of the following polynomial cluster

W8(x) = x48 − 4x47 − 12(2a − 1)x46 + 4(23a − 2)x45

+ 6
(
46a2 − 48a − 3

)
x44 − 4

(
253a2 − 60a − 27

)
x43

− 4
(
506a3 − 825a2 − 43a + 34

)
x42

+ 4
(
1771a3 − 798a2 − 519a + 21

)
x41 + · · ·

+ 4
(
a20 − 18a19 + 117a18 − 267a17 − 394a16

+ 3017a15 − 4328a14 − 1634a13 + 8228a12

− 3736a11 − 3116a10 + 620a9 + 2112a8 + 2104a7

− 3924a6 + 380a5 + 328a4 + 540a3 − 16a2

− 128a + 16
)
a3x

+ a24 − 24a23 + 238a22 − 1236a21 + 3404a20

− 3672a19 − 4088a18 + 13880a17 − 5156a16

− 14376a15 + 10740a14 + 1944a13 + 6112a12

− 8144a11 − 4776a10 + 5168a9 + 16a8 − 112a7

+ 464a6 − 512a5 + 480a4 − 352a3 + 48a2 − 32a

(A.1)+ 16.

Table 3
Coefficients hi of Eq. (A.2), defining all 12 chiral period-8 orbits for a = 6

i hi h25+i

0 4081915149653776 697379517174320
1 11825088143620608 −87381313486024
2 −21887282277722272 −118322373946016
3 −82322190795741696 16824678098308
4 48659701836748656 16591507043024
5 260604190051529856 −2615779402208
6 −57644966578548320 −1915768060896
7 −501527340806731008 329089897596
8 38106168440918880 180911917240
9 661197366740943936 −33409481984

10 −12909016244098816 −13821145376
11 −637192640245999552 2715269920
12 2955979290938928 840409988
13 467335987309604848 −174177728
14 −4789407335604992 −39694696
15 −268058220368684576 8620548
16 6896813076468784 1402860
17 122590329613695440 −317488
18 −5574109992989408 −34884
19 −45330203043210448 8190
20 3013920528548744 544
21 13689755360380576 −132
22 −1194224609938768 −4
23 −3400036376577488 1
24 363628094999840
Table 4
Orbital points for the chiral doublets of Fig. 4, roots of Eq. (A.2). The (xt , yt ) =
(xt , xt−1) values generate the leftmost partner in the first column. The conju-
gate orbit is obtained iterating (yt , xt )

Partners σ xt yt

11 & 13 −5.2990 2.557920295 2.087622867
19 & 25 −4.8897 2.486117961 2.434927209
23 & 29 −0.0059 0.904220716 2.415258053
43 & 53 4.0444 2.506137179 2.132958329
55 & 59 4.8119 0.866194464 2.507859588
47 & 61 5.3383 1.346844933 1.534072957

These coefficients are the key to the divisibility of individual or-
bits. The complete polynomial requires about two extra pages
to be recorded and is therefore omitted. It is however avail-
able from the authors on request. We just mention that this and
similar polynomials for higher periods represent parameterized
functions having cyclic Galois group and an exceptionally high
degree of symmetries and invariances.

Table 4 indicates for a = 6 the proper in-phase sequence of
roots needed to iterate Eq. (1) and obtain the orbits in Fig. 4.
The 12 period-8 orbits are defined by the roots of

(A.2)W8(x) =
48∑

i=0

hix
i,

with hi being listed in Table 3 and pairs of roots in Table 4.
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