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Summary. We study fully synchronized (coherent) states in complex networks of
chaotic oscillators, reviewing the analytical approach of determining the stability
conditions for synchronizability and comparing them with numerical criteria. As
an example, we present detailed results for networks of chaotic logistic maps hav-
ing three different scale-free topologies: random scale-free topology, deterministic
pseudo-fractal scale-free network and Apollonian network. For random scale-free
topology we find that the lower boundary of the synchronizability region scales ap-
proximately as & *, where k is the outgoing connectivity and i depends on the local
nonlinearity. For deterministic scale-free networks coherence is observed only when
the coupling is heterogeneous, namely when it is proportional to some power of the
neighbour connectivity. In all cases, stability conditions are determined from the
eigenvalue spectrum of the Laplacian matrix and agree well with numerical results
based on histograms of coherent states in parameter space. Additionally, we show
that almost everywhere in the synchronizability region the basin of attraction of
the coherent states fills the entire phase space, and that the transition to coherence
is of first-order.

1 The Interplay Between Dynamics and Topology

The structure and dynamics underlying complex networks have been widely
investigated, providing insight for many systems where they arise naturally
[1-3]. Complex networks appear in a wide variety of fields ranging from lasers
[4], granular media [5, 6], quantum transport [7], colloidal suspensions [8],
electrical circuits [9], and time series analysis [10], to heart rhythms [11],
epidemics [12,13], protein folding [14], and locomotion [15] among others
[1-3].

From the mathematical point of view, a network is a graph, composed by
nodes or vertices and by their connections or edges [2]. Sometimes, each node
is characterized by some dynamical state (amplitude), which evolves accord-
ing to some local contribution and to the interaction with the neighbourhood.
In other words, the complexity of the system underlying the network may be
introduced either in the way nodes are interconnected (fopology) or in the
way nodes evolve in time (dynamics).
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When studying network dynamics one frequently assumes a regular topol-
ogy (lattice) where each node evolves according to some more or less compli-
cated dynamics, typically fixed points [16], limit cycles [17] or chaotic attrac-
tors [18,19]. One main goal of this approach is to study the so-called spatio-
temporal chaos which appears in many different spatially extended systems
out of equilibrium, such as hydrodynamical flows, chemical reactions and bi-
ological systems [20,21]. Two main topics in this context concern the study of
mechanisms underlying pattern formation and pattern selection [20-24] and
also the study of chaotic synchronization behaviour [16,25].

Spatialiy extended systems are fundamentally modelled by (i} sets of cou-
pled differential equations [20] with nonlinear terms, where both time and
amplitude are continuous, {ii) cellular automata [22], where both time and
amplitude are discrete or (iii} coupled map lattices [21], where time is dis-
crete as in cellular automata, but where the space of states is continuous.
In all these models the underlying networks have connections whose range
assumes all values from 1 (nearest neighbours) up to some maximum range,
in particular the size of the system (global coupling regime). In other words,
neglecting boundary conditions, these network systems assume translational
symmetry and therefore the underlying network is called a regular network.

To study more complicated network structures, one usually neglects node
dynamics and all complexity is introduced by the network topology, i.e. by
the way nodes are connected to each other. This can be done in three different
ways [2]: by randomly connecting the nodes (random networks [26,27)]), by
cousidering some rapdom long-range connections in a regular network with
some small range of couplings (small-world networks [28,29]), or by consider-
ing the imtroduction of new nodes which are connected to the previous ones
following some rule of preferential attachment (scale-free networks [30]). For
all these cases there is no translational symimetry and no typical range con-
nection: connections do not have any ‘spatial’ interpretation. Therefore, one
uses some general topological quantities to characterize each particular net-
work, namely the average path length (£), i.e. the average minimum number
of connections linking two nodes, the clustering coefficient ¢, defined as the
average fraction of neighbours which are connected to each other, and the
distribution of connections P(k), representing the number of nodes having %
connections. Table 1 shows the values of these three quantities for all three
topologies.

Random networks were introduced by Erdés and Rényi in the late fifties
[26] to study organizing principles underlying some real networks [27]. In
random nefworks one defines some probability p(N) for any two nodes to be
connected in a total of N nodes. Consequertly, the connections are typically
long-range connections having a completely irregular structure. One main
goal in studying random networks is to determine the critical probability
pe(N), beyond which some specific property is very likely to be observed,
¢.g. the crifical probability marking a transition to percolation [31]. One
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Table 1. Characterizing complex topologies with the topological quantities: average
path length (), clustering coefficient C and distributions P(k) of connections k.
Here N is the total number of nodes, p is the probability for two nodes to be
connected, k is the average number of connections per node, Cy is the clustering
coefficient of the regular network from which the small-world network is constructed,
and m ie the number of initial connections of each new node in a scale-free network

Random Smalt-world Scale-free

£y InN/In{pN) N for small p InN/Inln N
In N for large p
C E/N C(](l *]J)B NN73/4
P(k) e FE*/k! e FEF [k am> /i

important feature of random networks, which also appears in real networks,
is their small average path length (£}, i.e. the average distance between any
two nodes increases slowly with the system size. However, unlike random
networks, real networks also have large cluster coeflicients C.

Small-world networks were introduced recently by Watts and Strogatz [28]
in order to implement both short {¢) and large C' features. Small-world net-
works have short-range connections between neighbours, as in regular net-
works, but they also have long-range connections similar to random networks,
without middle range ones. There are mainly two procedures to construct a
small-world network: starting from the same regular network, where each site
is coupled to some number of first neighbours, one either rewires each regular
connection with probability p {Watts—Strogatz model [28]) or adds a random
connection to each node with probability p (Newman—Watts model [32}). The
second procedure is more appropriate for most purposes, since it avoids the
possibility of generating disconnected clusters [32].

Both random and small-world topologies produce typically networks
where connections obey a Poisson distribution (see Table 1). However, there
are real systems which are scale-free, i.e. where the connection distribution
obeys a power law.

Scale-free networks were introduced by Barabdsi and Albert [30] using
growing and preferential attachment: one starts with a small amount of fully
interconnected nodes, and adds iteratively one node with m connections to
the previous nodes, chosen from a probability function proportional to their
number of connections. With this construction one obtains analytically [33-
36] a distribution of the connections P(k) o« k77, where v — 3 as N —
oo, independently of the initial number of fully interconnected nodes and of
m. It is also possible to generate scale-free networks, either by imposing o
priori a power-law distribution of all randomly distributed connections, or
by following a deterministic iterative rule for new nodes. The first procedure
generates what is usually called & generalized random graph, while the latter
was recently referred as deterministic scale-free network [37)]. '
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Deterministic scale-free networks are hierarchical structures composed by
some succession of generations of nodes, i.e. the set of new nodes appearing
simultaneously at a given iteration during the ‘construction’ of the network,
whose connections follow a particular power-law distribution [37—40], being
more easier to handle. The main difference between random and deterministic
scale-free networks arises from the local connectivity character of the latter:
random constructions generate irregular long-range connections, while de-
terministic networks impose a succession of generations of new nodes which
are, in some way, organized in ‘space’. Therefore, deterministic networks are
applied for instance in spin systems [39], and geographical and social net-
works [39,41].

After considering separately dynamical and topological complexity, the
next logical step toward real network dynamics is to consider them together.
One important question addressed in this context is to know whether full syn-
chronization between oscillators in such complex topologies would appear and
under which conditions the full synchronized state would be stable. By full
synchronization we mean the convergence of the amplitudes of all oscillators
to the same value, evolving coherently from then on. Therefore we call hence-
forth these fully synchronized states coherent states, to distinguish them from
partially synchronized configurations, when several different clusters of nodes
with the same amplitude are observed [16]. Synchronization and coherent be-
haviour of oscillator networks with complex topologies have been studied for
the random topology [42-45] and the small-world topology [46—49], and also
scale-free networks [45,50-53]. In random networks, it is already known [42]
that with high coupling strengths it is possible to fully synchronize oscilla-
tors and the corresponding stability condition may be computed [43] from the
matrix of connections characterizing the network. In small-world networks,
synchronizability is observed [47] only at the end of the small-world regime
(high values of p), and recently [46] it was found that heterogeneity in the
coupling may destroy coherence. These findings for small-world networks are
somehow contradictory to the ones of other studies [45,48] and other tapo-
logical quantifiers have been proposed [49]. In scale-free networks some recent
studies indicate that synchronizability among oscillators depends on the av-
erage connectivity [52] and is robust to a delayed flow of information |50} and
to the removal of low-connected nodes [52].

In this chapter we describe the genersl approach to study coherent states
in any general complex network of oscillators, and apply it to the particular
case of a scale-free network of discrete-time oscillators, which is studied in
great detail. We start in Sect. 2 by describing the stability analysis approach
to the model introduced in {1) and deduce the corresponding conditions for
synchronizability. In Sect. 3 we apply this stability aralysis procedure to the
particular case of scale-free networks, comparing our results with numerical
simulations. The random scale-free case is treated in Sect. 3.1, where we
show that the threshold value of such & transition as a function of coupling
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strength and outgoing connectivity obeys a power law with an exponent
that depends on the nonlinearity, while deterministic scale-free networks are
studied in Sect. 3.2, namely a pseudo-fractal network [38] and an Apollonian
petwork [39,40]. Discussion and conclusions are given in Sect. 4.

9 General Approach to Analyse Coherent States

Tor all the network topologies described above, if one considers discrete-time
ascillators, namely maps of the interval, the equation of evolution for their
amplitudes reads

zr11 = fla) —eGgla) , (1)

where £ is the coupling parameter, ¢ labels time, ®; = {1, ..., Zs n) With x4
representing the amplitude at time-step t of node s = 1,..., N, where N is the
total number of nodes, f = {f(z1},..., f(zn)) and g = (g(z1),....9(znN))
with f and g being real nonlinear functions, and G is the coupling (Laplacian)
matrix, whose element (,; represents the relative strength with which node
i is coupled to node j, and satisfies the conditions Z?; Gi;=0and Gy =1
foralli=1,...,N. In general G is a non symmetric matrix.

Usually, one chooses g(x) = = when studying livear coupling, and g(x} =
f(z) when studying nonlinear coupling. Here we consider the nonlinear case.
Apart from this choice, all the information about the dynamics is introduced
in the function f(z), while all the information about the coupling topology
(regular, random, small-world or scale-free) and the coupling regime (either
homogeneous or heterogeneous) is included in the coupling matrix G.

From (1} one easily sees that the coherent state 1y 3 = Ts2 = -+ =2y y =
X, evolves in time according to the local map X:1 = f(X;). There are two
ways to study these coherent states: either by studying the stability of small
perturbations of the coherent states or by making statistics over significant
large samples of initial configurations, counting how many converge to a co-
herent state. Some attention to the parameter ranges must be taken, since the
-basin of attraction of the coherent states may be bounded by regions of phase
space where amplitudes diverge. In particular, for maps of the interval one
has 0 < £ < 1 in order to guarantee convergence of any itial configuration.

In this chapter we shall illustrate both analytical and numerical ap-
proaches for the particular case of scale-free networks. To this end, we define
the coupling matrix as G;; = 1 and

k5
Eke.’c_,- k.iir

if node ¢ is coupled to node j, with k; representing the number of neighbours
of node 7 and K; is the set of labels of all neighbours of node i. If nodes 2
and j are not coupled G;; = 0. The parameter « is a real number controlling

Gij = (2)
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the heterogeneity in the coupling: positive values of o enhance the coupling
strength with sites having a large number of neighbours, while negative values
favour sites having less neighbours. For a = 0 the coupling between each site
and its neighbourhood is homogeneous.

For local dynamics we choose the well-known quadratic map f(z) =
ax?, where the free parameter o is restricted to the interval —0.25 < g < 2
and contains all possible dynamical regimes from & fixed point (e.g. a = 1)
to fully developed chaotic orbits {(e.g. a = 2).

When determining the stability of coherent states, various criteria are pos-
sible. For instance, one could compute the maximum Lyapunov exponent and
obtain the conditions where it is negative. However, such a Lyapunov expo-
nent does not indicate the existence of a local instability in the synchronous
state, which may pull the trajectories apart from the coherent manifold.

The carrect approach is based on the variational version of (1) proposed by
Pecora and Carroll [54], which is valid for any network of identical oscillators
as far as their local dynamics {quadratic map, Lorenz system, ete.) and their
coupling regime (linear, nonlinear, etc.) are concerned. For the nonlinear
coupling regime, the diagonal form of these variational equations reads [54—
56]

o1, = exp [A(eA)|6es = [DF(X) — e DF(X)] &, (3)

for the coherent states ;; = X, where A(e);) is the Lyapunov exponent,
Df{X) represents the identity matrix multiplied by the derivative of f(z)
computed at £ = X and A; are the eigenvalues of the coupling matrix G. If
G has zero-sum rows, le. E i1 75 = 0¥, and all its elgenvalues Ay < Az <

- < Ay are real and non_negatlve then A; = 0 corresponds to the moede
parallel to the synchronization manifold and the largest Lyapunov exponent
defines a master stability function [54]. The coherent state is stable whenever
AleX;) < 0fori=2,... N [54-56].

In our case, it is easy to check from (2) that G has indeed zerc-row sum,
yielding Ay = 0. Moreover, all the eigenvalues of the matrix G are real and
nonnegative, since det(G — Al) = det(G — AI)} where G is a positive semidef-
inite symmetric matrix, namely G = H/2KY2AK"/?H/2 with A being the
adjacency matrix of the network [52], and matrices H and K being the diag-
onal matrices with elements Hy; = 1/{3 .. i, ki) and K;; = k¥ respectively.

From (3) and regarding the ordering of the eigenvalues \; one easily con-
cludes that the stability condition reads

I - 1 —A
o= LmEREN ey ()
)\2 )\N

where X is the Lyapunov exponent of the local single map. In particular
there is a range of coupling strengths enabling synchronizability whenever

An/A2 < (1+e7*)/(1—e™*) holds. Therefore, by computing the eigenvalues
of the Laplacian matrix G one is able to find the range of couplings for which
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coherent states are stable. This approach can be applied for any system ruled
by (1).

3 Scale-Free Networks of Coupled Logistic Maps:
An Example

For the particular case of scale-free networks, recent results [45] show a tran-
sition to full synchronization for two particular values of the nonlinearity a
in the homogeneous regime (e = 0), when either the coupling strength or the
mumber of outgoing connections Is varied. However, as far as we know there is
1o detaited study showing how these coherent states depend on all the model
parameters. Therefore, we present in this section detailed numerical results
concerning synchronization In oscillator networks with scale-free topologies.
Our purpose is to give a complete example of how to study coberent solutions
in complex networks of oscillators, comparing both the stability analysis and
the numerical approaches.

The stability analysis is carried out just by computing the boundary val-
ues £, and ey in (4) as functions of the model parameters. The ranges of val-
ues where £, < gy are the ones where coherent solutions appear. As stated
above, for discrete oscillators, ruled by maps of the interval, the condition
{# < £ < 1 must be added.

Numerically, to detect coherent solutions from a given sample of initial
configurations, we compute the standard mean square deviation [45]

T

N
o7 = £ (@es - 7)?, (5)
=1

i

where 7, is the average amplitude at a given time step £. Whenever a? is zero
within numerical precision, i.e. ¢2 ~ 107", all the nodes are synchronized at
the same amplitude.

We divide our approach into two patts, one concerning random scale-free
networks (Sect. 3.1) and the other one concerning deterministic scale-free
networks (Sect. 3.2).

3.1 Random Scale-Free Networks

In this section, we use the algorithm of Barabdsi and Albert [2,30] to con-
struct the random scale-free network (see Sect. 1), where at each node one
places a chaotic logistic map. In a previous work [45] a transition to coher-
ence between chaotic logistic maps was found for random scale-free networks,
occurring for particularly high coupling strengths, typically of the order of
£. ~ 0.9, Our simulations have shown that these transitions occur after dis-
carding transients of ~ 10* time steps and they do not change significantly
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Fig. 1. Typical histograms of the standard mean square amplitude deviation a?

showing the sharp transition to coherence in function of (a) the coupling strength
£ with & = mg = 8, and (b) the outgoing connectivity k with ¢ = 0.95. Values of
N represent the fraction of configurations which converge to a coherent state from
a total of 500 initial random configurations, after discarding transients of 10* time
steps. Here a = 2, N = 1000, and o =0

with the network size. Moreover, as shown in Fig. 1, this transition to co-
herence is robust with respect to initial configurations, by varying either the
coupling strength e (Fig. 1a) or the outgoing connectivity k& (Fig. 1b). In
particular, above the threshold =z, ~ 0.9, all initial configurations converge
to a coherent state, indicating that in this parameter region the basin of
attraction of coherent states fills almost the entire phase space.

From stability analysis, we find that in the fully chaotic regime (a = 2)
the transition to coherence occurs for gradually smaller coupling strength if
the connectivity & is increased. Figure 2a shows the boundaries £7, and ey as
a function of k for a = 2 (solid lines) and a = 1.9 (dashed lines) with the same
parameter values as in Fig. 1. As one sees, in both cases the lower boundary
7, decreases when k increases, while the upper boundary s increases beyond
g = 1. Therefore, one expects that the region of synchronizability increases
for larger values of connectivity k. Figure 2a also shows clearly that for ¢ = 2
the intersection between both boundaries, €7, = 7, occurs just above &k =7,
which explains why the trausition to coherence in Fig. ib occurs at this value.
For ¢ = 1.9 this transition should oceur near £ = 5. Decreasing even more the
nonlinearity coherent solutions are observed for even smaller connectivities
and synchronizahility regions increase, as shown in Fig. 2b. To see this feature
more clearly we magnify in Fig. 2c¢ the rectangle of Fig. 2b. As one sees, one
exception occurs for & = 1.8, where the lower boundary is below the one for
a = 1.7, due to the fact that for ¢ = 1.8 the Lyapunov exponent of the logistic
map is smaller than the one for a = 1.7, as illustrated below in Fig. 4. For all
these values of a, the single uncoupled map shows chaotic orbits. Moreover,
for any other network size NV, the same curves are obtained.
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Fig. 2. Boundary values ¢z, and ¢y in (4) in function of the connectivity k (a) for
a = 1.9 (dashed lines) and o = 2 (solid lines), and (b) for o = 1.5,1.6,1.7,1.8,1.9
and 2. The data in the rectangle in {b) is magnified in (¢). The regions labelled
with ‘sync’ are the ones where coherent solutions are observed, i.e. £ < ey. Notice
that in (c) the boundary for o = 1.8 is helow the one for @ = 1.7, contrary o other
values (see text)

These analytical predictions extracted from the stability condition in (4)
and shown in Fig. 2 are strongly corroborated with our numerical simulations
as shown in Fig. 3. In Fig. 3a we plot the fraction ' of initial configurations
which converge to a coherent state for o = 2, while Fig. 3b shows the threshold
values, £, and k., at the transition curves where the entire sample of initial
configurations converge to a coherent state, for the same values of ¢ as in
Fig. 2c. Here, one clearly sees that there is a clear and sharp transition to
coherence. Interestingly, the curves in Fig. 3b {it very well the ones in Fig. 2¢,
which means that whenever the synchronizability condition e, < ¢y holds,
coherent states fill almost entirely the phase space.

Moreover, as illustrated in Fig. 3c, all curves obey a power law, within
our numerical precision,

geox kM. (6)

For the six above values of a, the exponents are respectively p = 0.2345,
0.2354, 0.2353, 0.2231, 0.2023 and 0.1804: the exponent is almost constant
below a ~ 1.7 and decreases above this value, as illustrated in the inset of
Fig. 3c.

To determine the nature of the transition to coherence seen in Figs. 3a
and 3b, we plot in Figs. 3d and 3e the average standard deviation in the
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Fig. 3. Transition to coherence as a function of connectivity & and coupling strength
e. (a) Fraction Ny—¢ of coherent states from 500 random initial configurations for
a = 2. (b) Coherence transition curves in the (=, k) plane for (from bottom to top)
a=13,1.6,1.8,1.7,1.9 and 2 = 2, and (¢} the same transition in a log-log plot,
showing power-law dependence between connectivity and coupling strength for the
transition curves, with an exponent  which depends on the value of a (see inset).
Here o = 0, L = 1000 and we used transients of 10* time steps. By increasing
the transient size to ~ 10% one clearly sees that the transition to coherence is of
first-order either {d) when varying the coupling strength ¢ or (e) when varying the
outgoing connectivity k
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region where transition to coherence is observed, using much higher resolu-
tion. One clearly sees that the transition to coherence is of first-order, when
varying € or k. That the transitions are indeed of first order is easily recog-
nised by the clear existence of hysteresis: when increasing either ¢ or k& the
configuration eventually falls into a coherent state, no longer spontaneously
desynchronizing, no matter how far the parameters are tuned back.

All results till now, concern the case of homogeneous coupling {& = 0).
Next, we study the case of heterogeneous coupling. Figure 4 shows the bound-
aries £7, and £y in (4) as functions of the outgoing connectivity &, the nonlin-
earity a and the heterogeneity ¢, covering both the homogeneous and hetero-
geneous regimes. Figure 4a shows the two boundaries as a function of % for
a=2and o = 0 (solid lines), o = 1 (dashed lines) and o = 2 (dotted lines).
As one sees for nonzero values of o the boundaries are no longer smoocth
curves, but instead they show fluctuations as k is increased, enlarging and
shrinking alternately the region of synchronizability, labelled as ‘sync’. When
varying o (Fig. 4b) the boundaries are mainly controlled by the Lyapunov
exponent of the local map (see (4)), where £, (resp. ey} decreases {resp. in-
creases) whenever a periodic window occurs [57]. The fiuctuations observed
in Fig. 4a are clearly seen in Fig. 4c, where the stability boundaries are plot-
ted in function of o fixing ¥ = 8 and a = 2 {solid lines) and a = 1.5 (dashed
lines). The fluctuations are much higher for o > 1 and for the fully chaotic
regime both boundaries may even cross each other suppressing synchroniz-
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Fig. 4. Boundary values £7, and ey in (4) in funciion of (a} connectivity k with
a =2 and a = 0 (solid lines) a = 1 (dashed lines) and a = 2 (dotted lines), (b)
nonlinearity a for k = 8 and & = 0,1 and 2, and (¢) heterogeneity « with k& = 8 and
a = 2 {solid lines) and a = 1.5 (dashed lines). The inset in (c) emphasises one small
region where synchronizability is not observed, e;, > £ (see text). Iere N = 1000
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ability (see inset of Fig. 4¢). Moreover, the lower boundary ey, decreases till
@ ~ 0.5, then increases till @ ~ | and decreases in average from there on.

All these analytical results computed from (4) and matrix G in (I) are
corroborated by our numerical simulations. In particular, the boundaries e,
and £ seen in Fig. 4c are obtained also when plotting the contour of Fig. 5a,
where we plot the average standard deviation from a sample of 500 initial
configurations and vary the coupling strength and heterogeneity for a = 2
and I, = 1000. While Fig. 5a shows the numerical results for o > 0, i.e. in the
case where nodes are more strongly coupled to the neighbours with higher
connectivities, Fig. 5b shows the transition to coherence when e < (0. Here
synchronizability is observed only for & 2 —0.15 and for very high coupling
strengths ¢ = 0,93,

Fig. 5. Transition to coherence in function of coupling strength £ and heterogeneity
o (a) when the most connected nodes dominate the dynamics {@ > 0) and {b) when
the coupling to nodes with the least neighbours is strengthened (« < 0). Here, we
compute the average standard deviation from a sample of 500 initial configurations
and fixa=2, k=mp =8 and N = 1000

We end our study of coherent solutions in random scale-free networks by
investigating briefly the role of hubs in the lattice. Instead of strengthening
the coupling to the most connected nodes by increasing v > 0, we now fix
a = 0 and impose synchronization between all the nodes with more than a
certain threshold k; of neighbours and observe which fraction of the initial
configurations converges to a coherent state. In this case the transition to
coherence converges asymptotically to a Hmit of the coupling strength, as
shown in Fig. 6a. The same occurs when synchronization is imposed to all
nodes with less than ky neighbours, as shown in Fig. 6b.

3.2 Deterministic Scale-Free Networks

In the previous section we focused on random scale-free networks, i.e. growing
networks where new nodes are connected following probabilistic rules. In this
section we study deterministic scale-free networks [37-39], using two different
deterministic topologies: the pseudo-fractal scale-free network introduced by
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Fig. 6. Transition to coherence when synchronization is imposed to all nodes having
a number of neighbours (a) larger than a threshold k., and (b} smaller than k,
(see text). Here a = 2, k=8, o = 0 and NV = 1000

Dorogovtsev et al [38] and the Apollonian network introduced by Andrade
et al. [39] and also studied in [40]. Both networks are illustrated in Fig. 7.

The pseudo-fractal network of Dorogovisev is obtained, starting from
three interconnected nodes, and at each iteration each edge generates a new
node, attached to its two vertices. Figure 7a illustrates this network after
three iterations, i.e. with three generations of nodes. The number of nodes
N,, and the number of connections V;, increase with the number of generations
as [38]

N, =3(@3"+1), (7a)
V, =3, (7h)
From Fig. 7a one easily sees that this network has indeed a scale-free topology,
since the number of nodes with degree & = 2,2%,...,27"1 2% and 2" is

equal to 37,371,...,3%,3 and 3 respectively. In particular, the exponent
of this power-law distribution is v = 1 + In3/In2. Moreover, the cluster

(b)

(@)

Fig. 7. Illustrations of two deterministic scale-free networks: (a) the pseudo-fractal
network {41}, and (b} the Apollonian network [39]. Identical symbols label nodes
belonging to the same generation n (see text), namely O for n = 0, Bfor n = 1
and e for n =2
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coefficient of a node with degree & is € = 2/k, and the average path length
is approximately () ~4In N, /(9In3).

The Apollonian network is constructed in a different way: one starts with
three interconnected nodes, defining a triangle; at n = 0 one puts a new
node at the center of the triangle and joins it to the three other nodes, thus
defining three new smaller triangles; at iteration n = 1 one adds at the center
of each of these three triangles a new node, connected to the three vertices of
the triangle, defining nine new triangles and so on (see Fig. 7b). The number
of nodes and the number of connections are respectively given by

N,=1@3""1+5), (8a)
V,=3203" 1), (8b)

The distribution of connections obeys a power law, since the number of nodes
with degree k£ = 3,3 x 2,3 x 22,...,3 x 2" 1,3 x 2" and 2*7! is equal to
gn, 3n—l 3n=2 32 3,1 and 3 respectively, and the exponent v is the same
ag for the pseudo-fractal network. Moreover, a node with & neighbours has a
cluster coefficient of C' ~ 4/k as reported in [40], converging on average to
€. = 0.828, and the average path length grows weaker than In N, [39].

Although both networks have similar values for the topological quantities,
they are quite different from the geometrical point of view: the pseudo-fractal
network has no metric, while the Apollonian network is embedded in Ruclid-
ean space and fills it densely as n — oo, being particularly suitable to describe
geagraphical situations [39].

For stability analysis purposes (see Sect. 2}, the Laplacian matrix G of
deterministic networks can be analytically determined from the adjacency
maftrix A = {a;;}, since they are related by

G =1+ AT, (9)

where T is the identity matrix and the values of matrix T = {T};} are defined
by

N [s3
@ji [Z;Fl az‘k]
N N @
2 p=1Gp [Ekzl %k]
A simple way to write the adjacency matrix of the pseudo-fractal network is

. An—l Mn—l
o= [ ™

Ty = —

(10)

:1N,,XN,.L ’ (11)

where N, is given by (7a), M” represents the transposed matrix of M and

for each generation n=1,2,... the matrix M, reads
M, = [M’él M*éfl B@ } , (12)
n—L ] (2x3n-1)x3n '
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with
Ao O ... 0]
@ Ag... 0
]anl - . . R . (13)
B 0 o Ao s
and whose starting form is
011l
Myg=4Ag=1101 . (14)
110],.4

For the Apollonian network, the adjacency matrix is given by the same
recurrence of (11), but this time with

0111
1011
1101
1110

Ao = (15)

and M, being a matrix with (3" + 5)/2 rows and 3" columns and having in
each column only three nonzero elements.

Figure 8 shows the eigenspectra of the Laplacian matrices for both the
pseudo-fractal (Fig. 8a) and the Apollonian (Fig. 8b) networks, in function of
the heterogeneity. As one sees for a = 2 (solid lines) synchronizability is ob-
served only above o > 1.5, and in particular there is no synchronizability for
the homogeneous coupling regime (v = 0). Figure 9a shows the distribution
of the average standard deviation over a sample of 500 initial configurations,
from which one clearly sees that there are no coherent solutions. Here the
standard mean deviation is characterized by some large value which is almost
constant beyond the weak coupling regime (¢ 2 0.2). In the weak coupling
regime (¢ < 0.2) the standard mean square deviation is even larger, since
the coupling is not strong enough to compensate the highly chaotic local
dynamics {a = 2).

From Fig. 8 one also sees that, for the pseudo-fractal and o > 1.5, the
upper threshold £ increases monotonicaily with the heterogeneity, while for
the Apollonian network the upper threshold decreases. This particular differ-
ence between both networks should be due to their geometrical differences,
in particular the fact that Apollonian networks are embedded in Euclidean
space could explain in some way that stronger dominance in the coupling to
the most connected nodes destroys coherence.

Choosing other values of o for which the local dynamics is chaotic, one
finds that the form of de curves sr{a) and £y (e} does not change. These
curves are onty shifted: £5, gets smaller, while 17 increases. Figure 8 illustrates
this for the particular case of & = 1.5. Decreasing even further the nonlinearity
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Fig. 8. Boundary £;, and £y for synchronizability in function of the heterogeneity
a for (a) the pseudo-fractal network and (b) the Apollonian network, with ¢ = 2
(solid lines) and a = 1.5 (dashed lines). For each network we use 6 generations of
nodes (see text). These eigenspectra are the same for any number of generations

below the accumulation point a = 1.411 ... synchronizability is attained for
any positive value of o, whenever the coupling strength is sufficiently strong.

Moreover there 18 a complicated dependence of the average standard de-
viation on the coupling strength and nonlinearity. As shown in Fig. 9b for de-
terministic scale-free networks one finds two main regions in the (e, ¢) plane:
{T) a region where the standard mean square deviation is large and varies
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Fig. 9. (a) Typical histogram of the standard mean square deviation o for the
pseudo-fractal network as a function of the coupling strength ¢, with ¢ = 2 and
« = 0. A similar result is obtained for the Apollonian network. (b) Histogram of
the standard mean square deviation o® as a function of nonlinearity ¢ and coupling
gtrength &, for deterministic scale-free networks with @ = 0. The mean square
deviation is averaged over a sample of 500 initial configurations and during 100
time steps, after discarding transients of 10% time steps
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smoothly with the parameters and (II} a region where the mean square de-
viation is smaller but has larger fluctuations. This second region, observed
for & < 1.7, is somehow surprising, since irregular variations of the stan-
dard mean square deviation occur for low nonlinearity and high coupling
strengths, precisely where one would expect the most regular behaviour of
the node dynamies.

As for the heterogeneous coupling regime (o # 0), Fig. 10 illustrates the
transition to coherence by varying the heterogeneity « for the pseudo-fractal
{Fig. 10a) and the Apollonian network (Fig. 10b). For both networks, one sees
that coherence sets in for « 2 1.5, and the contour of the histograms marking
the transition to coherence fits well the regions in Fig. 8 labelled as ‘sync’.
Moreover, from Figs. 10c¢ and 10d one observes that all these fransitions to
coherence are of first-order.

0 T T — T
i i
. J“[WMM ilc : ahu!q\ﬂ ﬁ?'w‘}""w
v i Pseuda ' | . ;) d
'E}(D r Apollonian fractal ’: ar ! é‘::l.af 1
| I
: |
1 |
=20 | F | 4
\ I
J . Apallonian
(c} L {d)
_30 : . 1 | .
0.75 0.78 0.77 0.955 0.985 0.975
E £

Fig. 10. Inducing transition to coherence by varying the heterogeneity a (see (1))
in scale-free networks. (a) Pseudo-fractal network and (b} Apolionian network. For
strong heterogeneity coherence appears beyond a relatively high coupling strength,

" and disappears again for very large couplings (see text). For each network, we use
¢ = 6 generations of nodes and fix & = 2. (¢) and (d} show high-resolution plots
of ¢? as a function of & for & = 2, emphasizing the first-order phase transition to
coherence

Finally, we study the role of hubs in deterministic scale-free networks,
as we did in the previous section for random networks. To this end, we im-
pose synchronization among ¢ = 1,...,{ generations, with £ being the total
number of generations, and observed in what conditions coherent states are
observed. In the psendo-fractal network the first generation has Ny — No = 3
nodes, the second one has Ny — N1 = 9 nodes, and the nth genecration has
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Fig. 11. Transitions to coherence in deterministic scale-free networks, when syn-
chronizing the first g generations of nodes out of ¢ generations (see text). (a)
Pseudo-fractal network and (b) Apollonian network. The collective dynamical be-
haviour is quite insensitive to hubs (see text). Insets show that transitions to co-
herence are of first-order. For each network, we use ¢ = 9 generations of nodes and
e = 2 fixed

Ny — Nyp_1 = 3" nodes. In the Apollonian network the number of nodes
appearing at each generation is precisely the same.

Figure 11 shows the standard mean square deviation as a function of
coupling strength for pseudo-fractal (Fig. 1la) and Apollonian networks
(Fig. 11b). In each case we choose the fully chaotic map (¢ = 2) and im-
pose synchronization among the nodes of the first g generations by setting
them to their mean amplitude at each time-step. In both cases, one sees that
the standard mean square deviation remains large when synchronization is
imposed to all g < £ — 2 generations. Coherent solutions are only observed
for g=4£—2and g =£—1, beyond a coupling threshold which is smaller for
the latter case. Surprisingly, for g = # — 1 the transition to coherence oceurs
for the same coupling strength in both networks. This may be due to the
fact that the fraction Ny/N; = 39=¢ = 1/3 of nodes on which one imposes
synchronjzation is the same for both networks and is high enough to suppress
the influence of local connectivities.

For g = £ — 2 the pseudo-fractal network shows coherence only above
very high coupling strengths, near ¢ ~ 1, while for Apollonian networks the
threshold is much lower. This difference in the coupling strength threshold
is due to the fact that here the fraction of nodes N,/N; = 1/9 to which
synchronization is imposed is small enough not to suppress the influence of
local connectivities. Therefore, since the hubs in the pseudo-fractal network
are less connected than the hubs in Apollonian networks, one needs higher
coupling strength to observe coherence. For any higher value ¢ of generations
the same results are obtained, since one has for the quotient of the number
of nodes between two successive generations N, /Nn_1 — 3 as n increases.



Coherence in Complex Networks 95

As a general remark, one observes from Fig. 11 that one needs to synchro-
nize a rather high fraction of nodes (2 1/9) to induce coherence. Therefore,
it seems that, dynamical collective behaviour on scale-free networks is quite
insensitive to hubs. As shown in the insets of Figs. 11a and 11b, the transition
to coherence is also of first-order.

4 Discussion and Conclusions

In this chapter we studied fully synchronized solutions for three scale-free net-
work topologies. The main conclusion is the following: in random scale-free
networks synchronization of chaotic maps not only depends on the coupling
strength but is mainly controlled by the outgoing conmectivity %, which is
a measure of the cohesion in the networks. Because of that, one finds co-
herent solutions in random scale-free networks of fully chaotic logistic maps
{a = 2) with outgoing connectivity k = 8 and homogeneous coupling, but
not in deterministic scale-free networks, since they have rather small effec-
tive outgoing connectivity, namely k = 2 for the pseudo-fractal network and
k = 3 for the Apollonian network. Therefore, although the exponens -y of con-
nection distributions in scale-free networks does not depend on the outgoing
connectivity {2], we have shown that, in general, synchronization of chaotic
maps in such coupling topologies is quite sensitive to it.

Our resulis were obtained both numerically, from histogram of signifi-
cantly large samples of initial configurations with a criterion for full syn-
chronization based on the mean standard deviation of amplitudes, (5), and
analytically from the eigenvalue spectra of the diagonalized variational equa-
tions computed at the coherent states, (3).

In particular, for random scale-free networks, the threshold values of the
coupling strength obey a power law, (6}, as function of the outgoing connec-
tivity. The exponent of this power law depends on the nonlinearity a of the
chaotic map, being almost constant below a. ~ 1.7 and decreasing linearly
ahove it. Interestingly this value of g is in the vicinity of the bifurcation of
the quadratic map where the period-3 window appears, and coincides with
the appearance of other nontrivial behaviours in coupled map lattices with
regular topologies, namely in the velocity distribution of travelling wave so-
lutions [24].

For deterministic scale-free networks with homogeneous coupling, the
same value q, indicates the threshold above which no coherent solutions are
observed, independently of the coupling strength. Above a., coherence is ob-
served only for heterogeneous coupling, namely for o 2 1.5. However, for
this range of values, we have also shown that coherence is also absent either
for very small or for very large coupling strengths, due to spatial instabili-
ties. Another particularly interesting result that still needs to be explained
is that, for Apolionian networks, the coupling threshold beyond which co-
herence disappears gets smaller when the heterogeneity is further increased.
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This point is not observed for the pseudo-fractal network and may be due to
the geometrical differences between both deterministic networks.

As a general property, we have shown that all transitions to coherence
are of first-order, indicating a similarity with other complex networks [29].
Furthermore, all results are robust not only against changes of the initial
configurations of node amplitude but also, in random scale-free networks,
against changes of the connection network. We also presented results indicat-
ing that in scale-free networks hubs play apparently no fundamental role in
the dynamical collective behaviour.
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