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We report an autonomous circuit containing periodicity hubs with surprisingly broad spi-
rals. Knowledge of broad spirals is important because all presently known spirals are com-
pressed along specific directions in parameter space making them difficult to study
experimentally and theoretically. We characterize the performance of the circuit by com-
puting stability diagrams for relevant sections of the control space. In addition, the alter-
nation of chaotic and periodic spiral phases is contrasted with equivalent alternations
obtained from an experimental implementation of the circuit.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical simulations have recently revealed a number
of unexpected regularities in the control parameter space
of dissipative flows [1–7]. These regularities consist of a
wide-ranging alternation of an apparently infinite hierar-
chy of periodic and chaotic spiral phases which converge
to certain focal points called periodicity hubs. Such hubs
are accumulation points of a doubly infinite sequence of
spirals: an infinite family of spirals characterized by param-
eters leading to periodic oscillations, intercalated with an
infinite family of spirals of chaotic oscillations. Individual
spirals of periodicity are composed by specific waveforms
which evolve continuously along the spiral, with a period
that approaches a specific value but with a number of
spikes (local maxima) which seems to grow without any
bound, diverging at the focal point.
Hubs and spirals were observed in systems as diverse as
lasers, chemical oscillators, electronic circuits operating
with either piecewise-linear or smooth nonlinearities,
and in other systems covering a large spectrum of practical
applications [2–4]. Periodicity hubs were found not to be
isolated points but to emerge forming infinite networks of
points organizing stable periodic and chaotic phases in
flows [5–7]. An experimental demonstration involving an
autonomous Duffing-like proxy displaying surprising dis-
continuous spirals was reported recently [8]. Networks of
a rather distinct type, forming zig-zag patterns, were also
described recently for a circuit with a tunnel diode, for a fi-
ber-ring laser and for the Hénon map [9].

Of interest for applications is the fact that hubs are very
robust against parameter changes and induce a wide-range
of predictability in control parameter space. By construct-
ing detailed phase diagrams, i.e. stability charts, displaying
the precise location in parameter space of the dynamical
phases, one obtains valuable information about how to
perform accurate parameter changes and to effectively
control the system. Note that this is different from just per-
turbing the system without a prescription to define which
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new dynamical state will emerge after parameter changes.
Also of interest is that parameter charts allow one to per-
form big changes of control parameters, not just infinites-
imally small changes as it is common nowadays.

From the experimental point of view, due to the fact
that hubs and spirals usually emerge compressed and dis-
torted, hubs and spirals are not always easy to detect. An
additional reason is that to observe hubs and spirals one
first needs to locate adequate parameter windows in an
usually high-dimensional control parameter space. Param-
eter tuning is normally difficult to perform experimentally.
In this case computer simulations help to expeditiously lo-
cate suitable regions to study hubs experimentally. An
interesting additional byproduct of stability diagrams is
that they may reveal shortcomings of the theoretical
description of the electronic components (diodes, lasers,
etc.) whenever discrepancies between computations and
measurements emerge.

In this paper, we study numerically and experimentally
a slight variation of a circuit investigated by Chua and Lin
[10,11] and subsequently considered in this Journal by
Kyprianidis et al. [12–14]. This circuit displays hubs with
surprisingly wide spirals in sections of its control parame-
ter space (see Figs. 3–5 below). The main novelty of our
work is the discovery of wide spirals in the circuit. The dis-
covery of wide spirals is important because known spirals
emerge compressed along specific directions in parameter
space making such distorted spirals particularly difficult to
study experimentally and theoretically. We report high-
resolution stability diagrams describing parameter sec-
tions containing hubs and wide spirals and specifying
numerical values for hardware implementations. We also
present stability diagrams obtained from a particular
experimental implementation of the circuit.

In the next Section we introduce the circuit. In Section 3
we describe how the numerical simulations were done.
Section 4 contains the bulk of stability diagrams while Sec-
tion 5 describes how the experimental stability diagrams
were obtained and compares them with numerical simula-
tions. Finally, in Section 6 we summarize our results.
2. Electronic circuit

The electronic circuit studied here, shown schemati-
cally in Fig. 1, is governed by an autonomous system of
four first-order ordinary differential equations. It involves
two active elements, a nonlinear resistor RN (implemented
using a Chua’s diode [10,11]) and a negative conductance
GN. Both elements exhibit symmetrical piecewise-linear
v � i characteristics as represented in Fig. 2. The main dif-
ference with the previous implementation by Kyprianidis
et al. [12–14] is that our circuit takes into account the sat-
uration effects of the real operational amplifier used in GN.
We remark, however, that hubs and spirals can be also ob-
served in the ideal model considered by Kyprianidis et al.
[12–14]. The parameter values used in our experimental
implementation and numerical simulations, unless stated
otherwise, are the ones summarized in Table 1.

According to Kirchhoff’s laws, the equations governing
the circuit of Fig. 1 are given by
C1
dv1

dt
¼ i1 � iRNðv1Þ; ð1Þ

C2
dv2

dt
¼ �i1 � i2 � iGNðv2Þ; ð2Þ

L1
di1

dt
¼ v2 � v1 � i1R1; ð3Þ

L2
di2

dt
¼ v2 � i2R2; ð4Þ

where v1 (resp. v2) is the voltage across the capacitances C1

(C2) and i1 (i2) is the current through the inductance L1 (L2).
The v � i characteristics of the nonlinear elements are rep-
resented by the following expressions

iRNðv1Þ ¼ Gcv1 þ
1
2
ðGa � GbÞðjv1 þ E1pj � jv1 � E1pjÞ

þ 1
2
ðGb � GcÞðjv1 þ E2pj � jv1 � E2pÞ; ð5Þ

iGNðv2Þ ¼ Gbbv2 þ
1
2
ðGaa � GbbÞðjv2 þ Ebj � jv2 � EbjÞ: ð6Þ

The parameters in these equations are functions of the
characteristics of the electronic components. In particular,
Eb depends on the output voltage swing, Vsat, of the opera-
tional amplifier, and its input voltage, Vcc = 15 V. The differ-
ent slopes of the nonlinear v � i characteristics of RN, Ga

and Gb, also depend on the non-zero forward voltage, Vc,
of the diodes which are modeled here as an ideal diode
and a battery. Both parameters Vc and Vsat and their uncer-
tainties were estimated from the data sheet provided by
the manufacturer. Although these parameters could pres-
ent some variations with respect to the specified values,
the manufacturer claims that they remain constant for
each component. In part, these small differences could ex-
plain a global drift when comparing experiments and
numerical simulations (see below).

Table 2 provides detailed explanation about how Eb, Ga,
and Gb depend on Vsat and Vcc and an estimate of uncertain-
ties involved in our measurements. Justifications for such
dependencies are well-known [15]. In computing the val-
ues in Table 2 we used the representative values
Vc = 0.65 V and Vsat = 12.7 V, as estimated from the data
sheet provided by the manufacturer, and Vcc = 15 V.

3. Numerical simulations

As mentioned in the introduction, before starting hard-
ware experiments it is best to first perform numerical sim-
ulations in order to locate adequate parameter windows.
This preliminary search is particularly important in sys-
tems like ours, which involve a high-dimensional control
parameter space. As discussed below, each experimental
diagram requires performing continued measurements
during rather long time intervals (normally of the order
of 4–6 weeks, depending on the resolution desired). Thus,
a direct experimental attempt of locating interesting
parameter windows is quite difficult (not to say impossi-
ble) task to perform.

We located suitable parameter windows by investigat-
ing how the several oscillations generated by the circuit
organize themselves in control parameter space. To this



Fig. 1. Schematic representation of the circuit leading to the flow described by Eqs. (1)–(4). The implementation and specific characteristics of the pair of
nonlinear resistive components is shown in detail in Fig. 2.

(a) (b)

(c) (d)

Fig. 2. Schematic representation of the nonlinear elements in the circuit of Fig. 1. Left column: definition of RN and its v � i characteristic. Right column:
definition of GN and its v � i characteristic.

Table 1
Reference values of the parameters used in our simu-
lations and experiments.

L1 = 9.8 mH L2 = 20.6 mH
C2 = 12 nF R2 = 140 X
E1p= 2.5 V E2p= 11.0 V
Eb = 7.5 V Ga = �0.7 mS
Gb = �0.5 mS Gc = 3.35 mS
Gaa= �0.5 mS Gbb= 0.5 mS

Table 2
Functional expressions of the experimental quantities and their uncertain-
ties, computed for the values listed in Table 1 and in Fig. 2.

RN circuit

E1p ¼ Vc þ Vcc
R6

R6þR3
DE1p ’ 0.3 V

E2p ¼ Vsat
R5

R5þR9
DE2p ’ 4 V

Ga ¼ � 1
R5

DGa ’ 0.1 mS

Gb ¼ � 1
R5
þ 1

R6
þ 1

R3
DGb ’ 0.2 mS

Gc ¼ 1
R8
þ 1

R6
þ 1

R3
DGc ’ 0.4 mS

GN circuit
Gaa ¼ � 1

R12
DGaa ’ 0.1 mS

Gbb ¼ 1
R10

DGbb ’ 0.1 mS

Eb ¼ Vsat
R12

R12þR11
DEb ’ 0.8 V
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end, we solved repeatedly Eqs. (1)–(4) using a standard
fourth-order Runge–Kutta algorithm with fixed time step
h = 1 � 10�6 s. Following common practice, the first
2 � 105 integration steps were disregarded as due to tran-
sient behaviors, with the subsequent 20 � 105 steps used
to calculate the Lyapunov spectrum (k1,k2,k3,k4) corre-
sponding to the four variables of the model.

Each numerically computed panel in Figs. 3 and 4 below
displays the analysis of 1200� 1200 = 1.44 � 106 parameter
points. This was possible using a cluster of 1536 AMD Opter-
on fast processors. Computations were started from the fixed
initial conditions v1 = 8 V, v2 = �5 V, i1 =�1 mA, i2 = 3 mA.
For each solution we computed the Lyapunov spectrum and
counted the number of peaks for selected variables and re-
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Fig. 3. Lyapunov stability diagrams showing hubs (indicated by arrows) and spirals for (a) C2 = 10 nF, (b) C2 = 12 nF, (c) C2 = 17 nF. Panels (d)-(f) show
magnifications of the regions inside the white boxes. White dots are located near shrimp ‘‘heads’’ [16,17], i.e. near points of a double (local) minimum of the
exponents. When C2 increases one sees a clear increase in the density of loops at the bottom of the white boxes, forming a sort of right angle with more and
more loops accumulating along the ‘‘secondary’’ diagonal. Units of R1 and C1 are X and nF.
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corded whether pulses repeated or not. To discriminate solu-
tions, we continued integrations for the subsequent 20 � 105

time steps recording up to 800 extrema (maxima and min-
ima) of the variable under consideration, v2.

4. Stability diagrams

This Section presents stability diagrams for relevant planar
sections of the multidimensional parameter surface defined
by the circuit. Altogether, such sections anticipate what is to
be expected when performing experiments and show how
sensitive the results could be as a function of the several
parameters involved. We computed two complementary
types of stability diagrams, namely stability diagrams charac-
terized either by Lyapunov exponents or by the number of
spikes contained in periodic oscillations. These latter dia-
grams, referred to as ‘‘isospike diagrams’’ [3], are quite helpful
to understand how the waveform of the oscillations evolve
when parameters are changed but, as shown below, can
equally well be used to discriminate chaos from periodicity.

Figs. 3 and 4 present some representative examples of
Lyapunov stability diagrams, where the numerical value of
the largest non-zero exponents are encoded according to
the colorbar1 shown under the individual panels. In these fig-
1 For interpretation of color in Figs. 4-6, the reader is referred to the web
version of this article.
ures we use colors to represent positive Lyapunov exponents
(i.e. chaotic oscillations) while gray shadings encode periodic
oscillations, characterized by negative values of the largest
non-zero exponent.

Fig. 3 illustrates the unambiguous presence of periodic-
ity hubs and their corresponding spirals in several sections
of the parameter control space. It also shows the effect of
varying parameters around the reference values listed in
Table 1, providing strong evidence of the robustness of
the hubs and spirals over quite large ranges of parameters.
From Fig. 3 one sees that decreasing C2 from 12 nF to 10 nF
has the effect of increasing the distance between the loops
of the spirals, while the opposite effect is observed when
increasing C2 from 12 nF to 17 nF. Note that for these
parameters, the two sequences of ‘‘shrimps’’ [16,17] which
coil up to form the spiral, with shrimps aligned along two
almost perpendicular directions forming a sort of right-an-
gle in the stability diagram. Such arrangement persists
when other parameters of the circuit are varied.

Fig. 4 shows Lyapunov stability diagrams and isospike
diagrams illustrating the distribution of peaks of the oscil-
lations as observed in the R2 � R1 control plane. Since resis-
tors are experimentally easier to control than capacitors or
inductors, this parameter plane is particularly attractive to
be investigated experimentally. Fig. 4(a) shows a global
view of the parameter region containing periodicity hubs
and the familiar spiral organization around them.
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Fig. 4. Hubs and spirals seen on the R2 � R1 plane when L2 = 20.6 mH and C1 = 6 nF. (a) Global view of control space. (b) Magnification of box B in (a),
showing the main spiral. (c) Magnification of box A in (a), showing Series of secondary spirals. (d) Lyapunov stability diagram illustrating the sequence of
shrimps in the upper box in (a). (e) Lyapunov diagram illustrating shrimps inside the lower box in (a). (f) Same as (d), but displaying the number of spikes of
the oscillations as observed in v2(t). (g) Same as (e), but displaying the number of spikes in one period of v2(t). Units of R1 and R2 are X. Each individual panel
shows the analysis of 1200 � 1200 parameter points.

C. Cabeza et al. / Chaos, Solitons & Fractals 52 (2013) 59–65 63
Fig. 4(b) shows with more details the region near the larg-
est hub while Fig. 4(c) illustrates a region where an appar-
ently infinite quantity of secondary hubs are located. As it
is known, an infinite network of hubs and spirals exist in
such parameter regions [7].

Fig. 4(d) and (e) show details of the shrimp organization
[16,17] far from the hub, converging to it at right angles as
seen in Fig. 4(a). From the isospike diagram in Fig. 4(f) one
sees that the number of spikes in periodic oscillations of
v2(t) increase by 2 after every turn along the spiral.
Fig. 4(g) shows a similar increase along the other sequence
of shrimps. Fig. 4(f) and (g) also show the boundaries
where changes in the number of peaks occurs when cir-
cling along the spiral. An interesting open problem is to
investigate what sort of waveform deformations lead to
changes in the number of peaks, if changes depend signif-
icantly on the specific variable used to count peaks, and if
new peaks arise by pulse deformations similar to the ones
observed recently in the Mackey–Glass delay-differential
equation and in a CO2 laser [2]. The robust and wide spirals
observed in several sections of the parameter space moti-
vated us to investigate the possibility of observing them
in a real implementation of the circuit. Such implementa-
tion and the results from it are described in the next
Section.

Fig. 4(f)–(g) present an independent corroboration of
the description above, based on Lyapunov exponents.
These figures illustrate the second type of stability dia-
grams, isospike diagrams, based on the number of spikes
contained in one period of the periodic oscillations. Such
diagrams can be also used to characterize the periodic or
chaotic nature of the oscillations. As indicated by the color-
bar, we use 14 colors to represent the number of peaks
present in a period of periodic oscillations. Oscillations
with more than 14 peaks in one period are plotted ‘‘recy-
cling colors mod 14’’, i.e. taking as their color index the
remainder of the integer division of their number of peaks
by 14. Multiples of 14 are given the index 14. Lack of
numerically detectable periodicity is interpreted as
‘‘chaos’’ and plotted in black. This simple strategy allows
all periodic oscillations to be accommodated with a 14 col-
ors palette.

The computation of the isospike diagrams [3] shown in
Fig. 4(f)-(g) was done by recording the minima and maxima
of the time series together with the instant when they occur.
Typically, we used series containing a total of 800 extrema
(i.e. 400 maxima and 400 minima). For each parameter value,
our computer program records maxima and minima after
computing Lyapunov exponents, i.e. after very long tran-
sients. We considered that an inflexion point exists whenever
the difference between consecutive minima and maxima is
larger than a threshold value �. This threshold is used to ac-
count for numerical errors and from small fluctuations in
the amplitudes, arising from the fact that the numerical inte-
grator may miss ‘‘exact’’ minima and maxima due do the
necessity of working with a finite-size step of integration.
Although the number of peaks is relatively insensitive to suit-
ably chosen values of �, small differences may arise due to
unavoidable errors introduced by the numerical integration.
In all isospike diagrams we used � = 10�6.
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Fig. 5. Comparison between simulations and experiments for two typical inductances: L2 = 21.5 mH (top row) and L2 = 23.7 mH (bottom row). In both
cases, C1 = 6 nF. (a) Isospike diagram indicating the distribution of peaks in v2(t). Black denotes chaos, i.e. lack of periodicity. (b) Experimental distribution of
peaks in v2(t). Resolution: 71 � 601 parameter points. (c) Isospike diagram recording the peaks of v2(t). (d) Experimental distribution of peaks in v2(t).
Resolution: 79 � 601 parameter points. Units of R1 and R2 are X. Resolution of numerical simulations: 1200 � 1200 parameter points.
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5. Experimental setup and measurements

The oscillator in Fig. 1 was implemented in the labora-
tory using fast commuting 1N4148 diodes and TL084 oper-
ational amplifiers. This operational amplifier was chosen
because its chip consists of four amplifiers, in such a way
that the circuit could be easily mounted on a board and
the nonlinear resistances, RN and GN, implemented using
nearly identical operational amplifiers. The 1N4148 is usu-
ally employed in high-frequency applications, with a max-
imum recovery time of 4 ns. The input voltage of the
operational amplifier was maintained constant along the
experiment at Vcc = 15.0 ± 0.6 V. The other relevant param-
eter values are Vc = 0.65 ± 0.06 V and Vsat = 12.7 ± 0.9 V.
Temperature effects on these components are included in
the uncertainties mentioned for each component.

In order to build experimental phase diagrams, the
resistors R1 and R2 were varied electronically over ade-
quate ranges in constant steps of 1 X. Due to the parasitic
currents inherent in the measurement system, finer resolu-
tions were not possible with the present experimental set-
up. The parameter space was swept vertically from bottom
to top. When starting a new vertical line, all power sup-
plies were disconnected before the value of R2 was chan-
ged. The initial conditions of the variables for each
temporal series, which depend on the instantaneous
charges of the capacitors, were not controlled, meaning
that each new measurement was started from random ini-
tial conditions. For each (R2,R1) parameter pair, a temporal
series of v2 with 10,000 points, sampled at 250 kHz, was
recorded using a Data Acquisition Card (NI-DAQ, USB
6218, 16 bit). For each temporal series, the number of
peaks of v2 is counted and recorded as a marker to discrim-
inate if the pulse was periodic or not. Lack of detectable
periodicity was taken as meaning chaos, to which a dis-
tinctive marker was assigned.

Fig. 5 presents a comparison between numerical simu-
lations and experimental results (shown in the two right-
most panels) for typical values of the inductance, given in
the figure caption. The time required to acquire the data
corresponding to a pair (R2,R1) was approximately
20 min so that to obtain the values shown in Fig. 5(b)
and (d) we needed of the order of 4 to 6 weeks of mea-
surements. During this period, thermal effects due to
the heating of the electronic components produced small
fluctuations in parameter values. In addition, the induc-
tance and capacitors are slightly sensitive to the different
frequencies of operation resulting from changing
parameters.

The agreement between the numerical simulations and
experimental results seen in Fig. 5 is far from perfect. As
mentioned, we believe the lack of agreement to arise as a
combined effect of the many uncertainties in the electronic
components available to us. It is also possible that the elec-
tronic components used might require a slightly different
model for them. Errors may also arise during the quite long
time interval necessary to collect the data. We could not
yet address these issue due to the very long time needed
for measurements and to the limited choice of components
at our disposal. From Fig. 5 one sees that two major differ-
ences between numerical simulations and experimental
results exist: First, our grid of resistances could not be
tuned finely enough to allow us to unambiguously detect
spirals. Thus, only a series of concentric circles is discern-
ible in Fig. 5(b) and (d). Second, all the aforementioned
fluctuations end up producing net shifts between the val-
ues of the resistors used in simulations and in experiments.
Fluctuations are particularly critical near the center of the
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spirals as can be recognized in Fig. 5(b) and (d). An impor-
tant difference between the numerical simulations and our
experiments stems from the fact that initial conditions can
be precisely fixed in the numerical approach. However, as
already mentioned, the initial charges in the capacitors
cannot be precisely controlled in the actual experimental
procedure. An interesting open question is to find how to
reduce the impact of fluctuations and other undesired
changes during measurements and to test different models
of the components.

6. Conclusions and outlook

We introduced a simple autonomous electronic circuit
which contains remarkably wide spirals in its control
parameter space. The key property and advantage of this
circuit is that its spirals are not compressed and distorted,
as it is usual, making them particularly attractive for
experimental and theoretical investigations. We computed
high-resolution stability diagrams for experimentally
accessible parameters and located suitable numerical
ranges for the electronic components involved. Recall that,
since there is no algorithmic procedure to anticipate the
presence of hubs and spirals in models of natural phenom-
ena, the numerical stability diagrams and parameters re-
ported here allow one to bypass lengthy and difficult
experimental searches. Concerning the waveforms com-
posing the spirals, they involve infinite families of antipe-
riodic oscillations, namely oscillations obeying x(t + T) =
�x(t), that will be reported elsewhere.

From an experimental point of view, it is important to
emphasize that all phase diagrams here refer always to sta-
bility diagrams, namely to parameter charts reflecting what
can be directly measured in the laboratory. Our spirals,
represented either with Lyapunov exponents or by count-
ing peaks, should not be confused with another interesting
class of mathematical spirals reported recently and con-
nected with unstable dynamics. Such spirals are not exper-
imentally observable and require specially devised
‘‘painting techniques’’ [18] for their visualization.

We believe that the use of Lyapunov phase diagrams
can significantly augment and speed up the understanding
of physical models: diagrams focused just on experimen-
tally measurable features reveal the occurrence of many
global bifurcations without recourse to more specialized
numerical techniques. They are therefore a very powerful
way to begin the analysis of nonlinear systems and can
also be applied to laboratory experiments, which, of
course, only detect stable structures. A complementary
tool that is also useful in analyzing dynamical systems is
the direct study of the evolution of the number of peaks
and amplitude of the oscillations as parameters are tuned
[3] as done in our Fig. 4(f) and (g).
As a final remark, we wish to mention an interesting set
of equations with a structure quite similar to our Eqs. (1)–
(4) that was recently studied by Tchitnga et al. [19] in this
Journal. These authors reported nice experimental evi-
dence of chaos in what they argue to be one of the simplest
imaginable autonomous implicit Hartley’s oscillator, made
with a junction field effect transistor, JFET, and a tapped
coil. While the parameter space of the JFET circuit remains
to be explored, judging from the structure of its flow it
seems likely that the JFET family might also display hubs
and spirals. It would be nice to investigate whether this
is true or not and how big are such spirals, if any.
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