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h i g h l i g h t s

• We quantify exactly periodic orbit growth in arbitrary degree polynomial maps.
• We report detailed stability phase diagrams for two cubic and one quartic map.
• Mobius inversion is immensely simpler than kneading sequences.
• Number of phases does not depend on the nonlinearity of the equations of motion.
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a b s t r a c t

We study the distribution of periodic orbits in one-dimensional two-parameter maps.
Specifically, we report an exact expression to quantify the growth of the number of periodic
orbits for discrete-time dynamical systems governed by polynomial equations of motion
of arbitrary degree. In addition, we compute high-resolution phase diagrams for quartic
and for both normal forms of cubic dynamics and show that their stability phases emerge
all distributed in a similar way, preserving a characteristic invariant ordering. Such coin-
cidences are remarkable since our exact expression shows the total number of orbits of
these systems to differ dramatically by more than several millions, even for quite low pe-
riods. All this seems to indicate that, surprisingly, the total number and the distribution of
stable phases is not significantly affected by the specific nature of the nonlinearity present
in the equations of motion.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Among the first problems that need to be solved when studying periodic orbits in dynamical systems is that of counting
the orbits and their symmetry classes [1–17]. For systems governed by arbitrary equations of motion, the counting problem
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Fig. 1. Growth of the number Nδ(k) of periodic orbits as a function of the period k for polynomial mappings of degree δ = 2, 3, 4, 5, according to Eq. (5).
Already for period as low as 20, cubic dynamics has about 103 times more orbits than the quadratic (logistic) map.

has no solution. But for dynamical systems of algebraic origin [18], governed by polynomial equations ofmotion, it is possible
to solve the counting problem exactly, for arbitrary degree of the polynomials, and this is themain analytical result reported
here, in Eq. (5). This powerful analytical result harbors surprising practical consequences which are also reported here, in
Section 3.

For the celebrated one-dimensional quadratic map, the counting problem was addressed early on, in 1958–63, by Myr-
berg in a ground-breaking application of computers to dynamics [19–21]. For a survey on one-dimensional quadratic dy-
namics see Refs. [21,22]. In two-dimensions, the problem was addressed as early as 1979 by Simó [23] for the Hénon map,
using an approach centered on the strange attractor creation and destruction. Exact formulas for the number of orbits and
orbital symmetries for the b = −1 Hamiltonian (area-preserving) limit of the Hénon map (x, y) → (a − x2 + by, x) were
obtained recently [24]. Knowledge about the proliferation of orbits (Fig. 1) is of relevance for a number of problems, e.g. in
arithmetic dynamics, in investigations of orbital inheritance dealingwith the transformation of orbits into new orbits [17,25],
and in the operation of chaotic systems that can perform computations and which are promising candidates for replacing
conventional computing technology [26–30].

The direct combinatorial problem of determining, for arbitrary values of control parameters, the partition of the set of
orbits either into real and complex orbits or into stable and unstable orbits is very hard. However, the total number of pe-
riodic orbits present in polynomial maps of a given degree can be counted in a simple and efficient way. As mentioned,
this is the problem solved here. The approach used is a nice application of enumerative combinatorics and the number-
theoretic Möbius inversion formula to a key problem in physics and dynamical systems. Several complementary aspects of
the combinatorial dynamics of maps are discussed by Alsedà et al. [31].

From a theoretical point of view, our results complement previous studies in this Journal by Xie andHao [7,8]. They inves-
tigated the number of orbits as a function of the number of ‘‘laps’’ of the map, i.e. as a function of the number of monotonic
map pieces separated by critical points of the equations of motion. Our results also complement earlier studies concerning
the distribution of stability in phase diagrams (control parameter space) of maps [9]. The exact quantification of the or-
bital distribution is relevant for a number of applications as discussed, for instance, by Lorenz in his last publication [10].
Orbital quantification for maps is also expected to throw light on the distribution of stability in systems governed by differ-
ential equations, an exceptionally difficult problem related with Hilbert’s sixteenth problem, the still unsolved problem of
enumerating limit cycles for polynomial differential equations in the plane [32].

2. Orbital growth in polynomial maps of arbitrary degree

The dynamic state of one-dimensional discrete evolution is governed by the equation of motion

xt+1 = f (xt), (1)

where the function f (x) defines all specific details connected with the dynamics. For instance, the well-known logistic map
is defined by f (x) = λ x(1 − x). Further, Eq. (1) is used nowadays to prospect new directions for computation, where one
explores the intrinsic dynamics of a chaotic system for computation [26–30]. More generically, algebraic dynamical systems
are governed by polynomial equations of motion of the type

f (x) =

δ
n=0

cnxn, (2)

where cn are real control parameters, and δ > 1 is the degree of the mapping f (x).
For a given degree δ, we denote by Nδ(k) the total number of periodic orbits with a genuine period k ≥ 1. Denoting by

f k(x) the kth composition of f (x) with itself, the orbital points of a genuine k-periodic orbit are defined by the roots of the
polynomial pk(x) ≡ x − f k(x). Here, genuine is used to stress the fact that all roots of pk(x) are necessarily distinct, i.e. that
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Table 1
Growth of the total number Nδ(k) of genuine period-k orbits for dynamics governed by one-
dimensional algebraic equations of motion of degree δ, illustrated here for δ = 2, 3, 4, 5, 6.

k N2(k) N3(k) N4(k) N5(k) N6(k)

1 2 3 4 5 6
2 1 3 6 10 15
3 2 8 20 40 70
4 3 18 60 150 315
5 6 48 204 624 1554
6 9 116 670 2580 7735
7 18 312 2340 11160 39990
8 30 810 8160 48750 209790
9 56 2184 29120 217000 1119720

10 99 5880 104754 976248 6045837
11 186 16104 381300 4438920 32981550
12 335 44220 1397740 20343700 181394535
13 630 122640 5162220 93900240 1004668770
14 1161 341484 19172790 435959820 5597420295
15 2182 956576 71582716 2034504992 31345665106
16 4080 2690010 268431360 9536718750 176319264240
17 7710 7596480 1010580540 44878791360 995685849690
18 14532 21522228 3817733920 211927516500 5642219252460
19 27594 61171656 14467258260 1003867701480 32071565263710
20 52377 174336264 54975528948 4768371093720 182807918979777

by iterating Eq. (1) one obtains k distinct values of xt , before the sequence starts to repeat. Obviously, the iteration of Eq. (1)
may repeat after j steps, for some j < k. But in such case the orbital period would not be k, but j, a different (and smaller)
period. Since period-1 orbits (i.e. fixed points) repeat indefinitely upon iteration, they clearly qualify as periodic orbits of
any arbitrary period length. But such orbits are all trivial orbits that do not qualify as genuine orbits for any period higher
than 1. They are genuine orbits of period 1.

For a fixed dynamical system, characterized by a polynomial of degree δ, fixed, the total number of roots of pk(x) =

x− f k(x) is δk. These roots are obviously points of orbits with period k or of orbits with period which are divisors d of k. Thus,

δk
=


d|k

dNδ(d). (3)

Now, Möbius inversion [33] yields

k Nδ(k) =


d|k

µ(d)δk/d (4)

so that the number of periodic orbits is then, simply,

Nδ(k) =
1
k


d|k

µ(d)δk/d. (5)

In this equation, µ(d) is the Möbius function [33] and the sum runs over all divisors d of the period k, including the trivial
divisors d = 1 and d = k.

Eq. (5) is our key result. It is valid for arbitrary degrees δ and for arbitrary periods k. For the lowest nonlinearities, namely
for δ = 2, 3, 4 and 5, Fig. 1 illustrates how fast the number of orbits grows as a functions of the period k. The numbers plotted
in this figure are fromTable 1, generatedwith Eq. (5). As is clear from Fig. 1, even for a period as low as 20, cubic dynamics has
about 103 times more orbits than the quadratic (logistic) map. Considerably more dramatic ratios are obtained comparing
the number of orbits for polynomials of higher degrees. For the particular case of the quadratic map, δ = 2, our values for
N2(k) ought to agree with the corresponding ones for m = 2 listed in Table IV of Xie and Hao [7], but they do not. We do
not know the origin of the differences. Our values, however, agree with those found by MacKay, as discussed in Ref. [16].

Although Eq. (5) is not particularly hard to obtain and should have been known for a long time, we have not been able to
find it in the literature. Knowledge of the exact number of orbits is, however, fundamental inmany applications, particularly
when classifying analytically all possible behaviors as a function of parameters [17] orwhen truncating sumsover all periodic
orbits in computations involving trace formulas [25]. Knowledge of the exact orbital growth leads naturally to interesting
questions, e.g. what is themechanism preventing amuch larger number of orbits of becoming stable? Noteworthy is the fact
that, for arbitrary periods and dimensions, the number of orbits given by Eq. (5) depends neither on the number of ‘‘laps’’ of
the polynomial nor on any associated parametrization in terms of ‘‘kneading sequences’’ [7,8,24]. Möbius inversion suffices.

3. Invariance of the number of stable orbits

Since the maps display an extremely strong proliferation of orbits as a function of the nonlinearity, it is natural to ask
about the impact of the several millions of orbits in the control parameter planes of the individual maps. To address this
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Fig. 2. Phase diagrams for the two normal forms of the cubicmap (top rows) and for quarticmap (bottom row). Although these phase diagrams look rather
similar, Eq. (5) demonstrates that the underlying dynamics may differ by several thousands of orbits. Colors mark periodic orbits, gray shading denotes
chaos, and white divergence. The white parabolas intersecting inside each periodicity island represent loci of superstable orbits. White dots indicate the
location of doubly superstable orbits and numbers refer to their period. Themost easily visible points are located at the central body of infinite symmetrical
cascades of the stability domains, part of ‘‘shrimps’’ [9,34]. See text.

question, in Fig. 2 we present phase diagrams computed with high-resolution for extended regions of the parameter space
for representative systems, namely for the pair of normal forms which characterize every possible system with cubic dy-
namics, and for a quartic map. In this figure, the top row shows phase diagrams for f (x) = x(x2 − 3a) − b, the center row
for the dual cubic f (x) = −x(x2 − 3a) − b, while the bottom row shows phase diagrams for the standard canonical quartic
f (x) = (x2 − a)2 − b [9,11–13]. Boxes seen in the panels on the left column are shown magnified on the right panels. All
these diagrams display Lyapunov exponents computed and plotted in the usual way [12,13]. Each individual panel displays
the analysis of a mesh of 900 × 900 equally spaced parameter points. Iterations were started from x = 0. As usual in these
calculations [12,13], the first 104 iterations were disregarded as transient behavior. In presence of multistability, initial con-
ditions were chosen in order to maximize visibility of periodic windows. Colors refer to periodic motions while the gray
shading denotes chaos (lack of periodicity). Numbers mark the period of the main stability domains and demonstrate the
great similarity of the distribution of periodic orbits, despite differences of the underlying maps.

Fig. 2 demonstrates forcefully that all phase diagrams look rather similar, with identical phase ordering, despite their
distinct nonlinearity and the strong orbital proliferation recorded in Table 1. So, where do all additional orbits end up? First,
periodic orbits exist continuously, independently of the parameter values, although many of them might exist only in the
complex sector of the phase space. Second, our formulamakes no difference between real, complex, stable or unstable orbits,
simply summing them all together. Therefore, the resemblance of the three phase diagrams might be thought as indicative
that the orbital proliferation occurs mainly among orbits that are either complex or unstable, or both. Very surprisingly,
the number of stable orbits does not seem to be significantly affected by the specific degree of the nonlinearity. Clearly, to
clarify what is happening one needs to find a way to compute separately each class of orbits as a function of the parameters.
Although rather enticing, this task seems far from trivial.
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From the regular ordering of the stable periodic orbits seen in Fig. 2 one might be led to wonder if such ordering could
have something in commonwith Sharkovsky’s ordering [35–39] or with its much celebrated corollary ‘‘period-three implies
chaos’’ [40]. Although a priori the existence of such connection cannot be ruled out, it seems to be rather unlikely. For,
the aforementioned theorems deal with existence proofs of essentially unique unstable orbits with periods obeying a strict
sequential ordering without repetitions, not with what we deal here, namely with multiple stable orbits which emerge in a
sort of infinitely cascaded organization where periods may repeat abundantly as they grow.

4. Conclusions and outlook

In conclusion, we quantified exactly the growth of periodic orbits in polynomial maps and computed high-resolution
phase diagrams for cubic and quartic systems. Our result is valid for arbitrary periods and dimensions, with the number of
orbits given by Eq. (5) depending neither on the number of ‘‘laps’’ of the polynomial nor on any associated parametrization
in terms of the burdensome kneading sequences [7,8,24]. Möbius inversion suffices. Further, we found the stability phases of
the maps considered to emerge all distributed in a similar way, preserving a characteristic invariant ordering among them.
These coincidences are remarkable since the number of orbits of these systems differs dramatically by more than several
millions, even for quite low periods. All this seems to indicate that the total number and the distribution of stable phases is
not significantly affected by the specific nature of the nonlinearity present in the equations of motion.

A challenging open problem is to find a means of determining separately the number of real, complex, stable, and un-
stable orbits that coexist as a function of control parameters and symmetry classes for such orbits. The exact determination
of symmetry classes for the Hénon Hamiltonian repeller can be found in Table 1 of Ref. [16]. The problem of counting the
periodic orbits of linear maps on a torus is proposed as a challenge in the book of Alligood et al. [41]. Flatto and Lagarias
discussed some counting-problems associated with the statistics of orbits on the Lorenz attractor [42]. Estimates of the
number of unstable periodic orbits in noisy chaotic systems are given by Pei et al. [43], but no exact and general results
are known. As the degree of the polynomial governing the dynamics grows, why the corresponding explosive growth of
the number of periodic orbits seems not to significantly affect the number of stable orbits? Why does this number seem to
remain invariant? What is the effective role of multistability in all this?
Note added: After submitting this paper, we found a result given on page 168 of a book by Rotman [44] showing that, for
prime δ, our Eq. (5) forNδ(k) coincideswith the equation obtained in a rather different context, for the number of irreducible
polynomials of degree k over GF(δ). Rotman refers to Simmons [45] for a proof of this result. Our equation, however, is valid
for any value of δ, prime or not. It would be interesting to interpret the values obtained for non-prime δ in the context of
Galois fields. We are indebted to Sebastian van Strien, Franco Vivaldi, and Patrick Morton for pointing out that formulas to
count orbits of polynomial maps are also presented in Refs. [46–50].
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