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Chaotic dynamics of a magnetic nanoparticle

J. Bragard,1 H. Pleiner,2 O. J. Suarez,3 P. Vargas,3 J. A. C. Gallas,4,5 and D. Laroze2,6,*
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We study the deterministic spin dynamics of an anisotropic magnetic particle in the presence of a magnetic
field with a constant longitudinal and a time-dependent transverse component using the Landau-Lifshitz-Gilbert
equation. We characterize the dynamical behavior of the system through calculation of the Lyapunov exponents,
Poincaré sections, bifurcation diagrams, and Fourier power spectra. In particular we explore the positivity of
the largest Lyapunov exponent as a function of the magnitude and frequency of the applied magnetic field and
its direction with respect to the main anisotropy axis of the magnetic particle. We find that the system presents
multiple transitions between regular and chaotic behaviors. We show that the dynamical phases display a very
complicated structure of intricately intermingled chaotic and regular phases.
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The world of nanometric scale is becoming increasingly
accessible due to the remarkable development of experimental
techniques. The technological applications of nanostructures
can be found in many different areas such as biomedicine
or high-precision instrumentation. In material science, one
significant application of magnetic particles and clusters is
in the area of recording media [1] and so the magnetization
reversal is one of the fundamental features of data storage.
Therefore, a detailed study of a simple magnetic systems is
really important and will be presented here.

Nonlinear time-dependent problems in magnetism have
already been studied in numerous cases where the standard
approaches to modeling the classical magnetic dynamics
use the Landau-Lifshitz or Landau-Lifshitz-Gilbert (LLG)
equation; recent accounts of developments can be found in
Refs. [2,3]. These models have been used in both discrete
[3–7] and continuous magnetic systems [3,8,9]. Several
experiments showing chaotic behavior in magnetic systems
have been reported [10–13]. Typical magnetic samples are
yttrium iron garnet spheres [10]. It is worth mentioning that
by using ferromagnetic resonance technique, different routes
to chaos have been found such as period-doubling cascades,
quasiperiodic dynamics, and intermittent dynamics. Hence a
theoretical description including phase diagrams of the chaotic
regions is needed and can motivate further experiments in this
area.

Here we report the computation of complete phase diagrams
for a chaotic nanoparticle governed by the LLG equation.
Complete phase diagrams, namely, diagrams recording all
physically stable phases, both periodic and chaotic, are
relatively hard to obtain because they imply computationally
intensive calculations, particularly for models described by
flows, i.e., by continuous systems of ordinary differential equa-
tions. Recent work describing these methods and difficulties
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can be found in Ref. [14]. The aim of this paper is to analyze
the influence of a time-dependent external magnetic field on
an anisotropic magnetic nanoparticle. In particular we study
a periodic driving in the direction perpendicular to the main
anisotropy direction (the easy axis) and a constant driving
parallel to the easy axis.

Let us consider a magnetic particle and assume that it can
be represented by a magnetic monodomain of magnetization
M, being governed by the dimensionless LLG equation

κ
dm
dτ

= −m × � − ηm × (m × �) , (1)

where m = M/Ms , τ = t |γ |Ms , and κ = 1 + η2 [3,4]. Here
Ms is the saturation magnetization that leads to |m| = 1 and
γ is the gyromagnetic factor, which is associated with the
electron spin and whose numerical value is approximately
given by |γ | = |γe| μ0 ≈ 2.21×105 m A−1 s−1. In order to
get better physical insight into the problem, let us evaluate
the scales introduced here. Typical values are, e.g. for cobalt
materials, Ms ≈ 1.42×106 A/m; hence the time scale (τ = 1)
is in the picosecond range, ts = 1/|γ |Ms ≈ 3.2 ps. The
present technology is able to follow experiments at the
femtosecond scale. Indeed, Beaurepaire et al. [15] observed
the spin dynamics at a time scale below the picosecond scale
in nickel [15]. More recently phenomena have been observed
at a time scale less than 100 fs [16,17]. In Eq. (1), η denotes
the dimensionless phenomenological damping coefficient that
is characteristic of the material and whose typical value is
of the order of 10−4–10−3 in garnets and 10−2 or larger in
cobalt or permalloy [3]. In Eq. (1) the effective magnetic
field, denoted by �, is given by � = h + β (m · n̂) n̂, where
h = H/Ms is the external magnetic field and β measures the
anisotropy along the n axis. This special type of anisotropy
is called uniaxial anisotropy and the constant β can be
positive or negative depending on the specific substance and
sample shape [18] in use. We apply an external magnetic
field h that comprises both a constant longitudinal and a
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periodic transverse part with fixed amplitude and frequency
h = h0 + hT sin (�τ ), where h0 (‖ẑ), hT (⊥ẑ), and � are time
independent. We assume that the particle is fixed with the
anisotropy axis along the constant field, n‖ ẑ. We remark that
|m| is conserved and Eq. (1) describes pure rotations of the
magnetization in three-dimensional space. Many numerical
schemes have been used to resolve the LLG equation [3] and
to avoid numerical artifacts; it is suitable to solve Eq. (1) in
the Cartesian representation [4].

For zero damping and without parametric forcing Eq. (1) is
conservative. The dissipation and the oscillatory injection of
energy drives the magnetic particle in an out-of-equilibrium
situation. In such a circumstance the magnetization of
the particle may exhibit complex dynamical behavior, e.g.,
quasiperiodicity, and chaos [4]. In Ref. [4] the existence of
chaos as a function of |hT | was discussed. In the following
we provide a more exhaustive characterization of the chaotic
regime including its dependence on the longitudinal field |h0|
and the frequency �, which will reveal a rather complicated
topology in parameter space.

First, we characterize the dynamics of Eq. (1) by evaluating
the Lyapunov exponents (LEs). This method consists in quan-
tifying the divergence between two initially close trajectories
of a vector field. In general, for a N-dimensional dynamical
system described by a set of equations dXi/dτ = F i(X,τ ),
the LEs are defined by

λi = lim
τ→∞

1

τ
ln

(∥∥δXi
τ

∥∥∥∥δXi
0

∥∥
)

, (2)

where λi is the ith Lyapunov exponent and ‖δXi
ζ ‖

is the distance between the trajectories of the ith component
of the vector field at time ζ . Let us recall that the measure of
the exponential divergence in the phase space is given by the
LEs and that one has as many LEs as one has dimensions of
the phase space of the dynamical system [19].

Since our prototypical model conserves the modulus of
the magnetization |m| and the applied magnetic field is time
dependent, the effective dimension of the phase space is 3.
Therefore, one could compute three LEs associated with
the dynamics of Eq. (1). However, in terms of a dynamical
system, only the largest LE (LLE) may become positive for
a dissipative system of dimension 3. Here we explore the
dependence of the LLE on the different control parameters
of the system. One can, e.g., draw two-dimensional maps
illustrating the magnitude of the LLE as a function of two
parameters. This permits us to determine the parameter ranges
that lead to chaotic dynamics, i.e., the LLE that is positive,
and those showing regular (quasiperiodic, periodic, or fixed
point) dynamics, i.e., the LLE that is zero or negative. In
addition, following a technique explained in Ref. [14], we use
an iterative zoom resolution process to investigate further the
dependence of the dynamics upon very small variations of the
system parameters.

In contrast, there are other methods of quantifying the
nonperiodic behavior of a dynamical system such as the
Fourier spectrum, Poincaré sections, and correlation functions
[3,7,19]. Bifurcation diagrams using Poincaré sections of
the dynamics of the magnetization angles, given by m =
(cos φ sin θ, sin φ sin θ, cos θ ), were employed in Ref. [4]. In

FIG. 1. (Color online) Phase diagram displaying the largest
Lyapunov exponent color coded as a function of the field amplitudes
hx and hy for � = 1, hz = 0.1, β = 1, and η = 0.05. The structure
of the phase diagram is invariant with respect to the orientation of
HT . The resolution is �hx = �hy = 2×10−3, namely, 1500 × 1500
discretization points.

these diagrams, when there is a continuum of points, the
behavior is quasiperiodic or chaotic.

We have integrated Eq. (1) in the Cartesian representation
by using a standard fourth-order Runge-Kutta integration
scheme with a fixed time step dτ = 0.01 that ensures a
precision of 10−8 on the magnetization field. The LEs are
calculated for a time span of τ = 327 68 after an initial
transient time of τ = 1024 has been discarded. The Gram-
Schmidt orthogonalization process is performed after every
δτ = 1. The error E in the evaluation of the LEs has been
checked by using E = σ (λM )/ max(λM ), where σ (λM ) is the
standard deviation of the maximum positive LE. In all cases
studied here E is of the order of 1%, which is sufficiently
small for the purpose of the present analysis. Due to the large
number of parameters involved in the system, we set β = 1
and η = 0.05 for the rest of the paper.

Figure 1 shows a color-coded LLE phase diagram as
a function of the oscillatory field amplitudes hx and hy .
The chaotic regions appear in a circular symmetric fashion,

FIG. 2. (Color online) Phase diagram displaying the largest
Lyapunov exponent color coded as a function of the field amplitude
hx and the frequency � for hy = 0, hz = 0.1, β = 1, and η = 0.05.
The resolution is �� = 2×10−3 and �hx = 3×10−3.
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FIG. 3. (Color online) (a) Phase diagram showing a global view of the hx × hz space, computed for � = 0.5, hy = 1, β = 1, and η = 0.05.
(b) Magnification of the black box in (a). (c) Magnification of the black box in (b). The parameter resolutions of these panels are (a)
�hx = 3×10−3 and �hz = 2×10−3, (b) �hx = �hz = 4×10−4, and (c) �hx = �hz = 4×10−5.

indicating an invariance of the LEs with respect to the
orientation of the periodic transverse field hT . For a general
initial orientation of the magnetization, the full dynamical
problem is not rotationally invariant. However, since the
occurrence of chaos is independent of initial conditions and
since there is only a single basin of attraction for the dynamics,
the orientation of hT in the perpendicular plane is irrelevant
for the position of the regions with a positive LE. We observe
that no chaos is found for small amplitudes of the oscillatory
transverse field and that by increasing the field amplitudes,
regions with chaos and those with regular dynamics alternate.
In fact, the chaotic regions appear at almost constant intervals
of hT = (h2

x + h2
y)1/2.

Figure 2 shows the color-coded LLE as a function of the
amplitude hx and the frequency � of the time-dependent
field at a small fixed value of the constant field hz. For a
given driving frequency, chaos occurs only above a certain
field strength. Chaos appears first for a finite frequency,
which corresponds roughly to the characteristic time scale
of the magnetization dynamics. For smaller (and larger)
frequencies the field has to be larger to experience chaos. Very
small frequencies (� � 0.1) and large frequencies (� � 1.3)
hindered the appearance of chaos. Apparently, in both cases
the time dependence of the driving force is instrumental for
magnetization chaos because either the magnetization can
follow it or it is averaged out. Interestingly, one can observe
that inside the main chaotic areas there are still windows
without chaos. For small fields and small frequencies the
antagonistic nature of these two quantities for the appearance
of chaos becomes clear, since chaos is only possible above a
line � + hx ≈ const.

In Fig. 3 we investigate the dependence of chaos on the
two amplitudes hx and hz of the periodic transverse and
constant longitudinal fields, respectively. The ratio of these
two amplitudes determines the angle of the periodic driving
field with respect to the anisotropy axis. In Fig. 3(a) the global
view for a rather large range of field values is displayed, while
Figs. 3(b) and 3(c) show enlarged perspectives giving a more
detailed picture. There is no chaos for a high constant field hz,
where its stabilizing effect dominates. For lower values of hz,
one observes again an alternation of chaotic and regular regions
as one increases the hx values. These alternating regions
are reminiscent of the Arnol’d tongues that are observed in

synchronization theory [20]. They look very similar to the
reverberations present in damped-driven Duffing oscillators
[21]. Note that the chaotic regions are not compact, but
contain areas of regular dynamics for special values of the field
amplitudes. The better resolution of Fig. 3(b), the zoomed-in
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FIG. 4. (a) Bifurcation diagrams of θ and φ and LLE (λ) as a
function of hx . The fixed parameters are � = 0.5, hy = 1, β = 1, η =
0.05, and hz = 1. Poincaré sections of φ and θ and the corresponding
Fourier power spectra of mx are shown for (b) and (c) hx = 3.35
and (d) and (e) hx = 3.40. The amplitudes of the power spectra are
expressed in arbitrary units.
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view of the white square seen in Fig. 3(a), reveals an interesting
pattern in the form of a regular self-similar succession of
chaotic and regular regions. Finally, by the next zooming step
in the lowest frame [see Fig. 3(c)], one recognizes that the
boundaries separating the chaotic and regular regions may be
very complicated as they mix continuum branches with diffuse
punctual separations.

Finally, in order to investigate in more detail different types
of transitions between regular to chaotic behavior we analyze
a horizontal cut of Fig. 3(b) in the range 3.1 � hx � 3.6 at
hz = 1. The bifurcation diagrams of θ and φ as a function of
hx are presented in Fig. 4(a). We observe that the system starts
in a periodic state and makes an abrupt transition to a chaotic
behavior. Above that, alternating regular and chaotic behaviors
are found while increasing the parameter hx . The middle and
the lower parts of Fig. 4 show the Poincaré sections of φ and
θ and the corresponding Fourier power spectra of mx for two
values of hx , one in the chaotic [Fig. 4(b)] and the other in
the regular regime [Fig. 4(d)], respectively. Figure 4(d) shows
a Poincaré section consisting of seven isolated points, which
describes a period-7 behavior.

In conclusion, we have determined the regions of param-
eters that lead to either chaotic or regular regimes using
the Lyapunov exponent method. The azimuthal orientation

of the transverse oscillating field is irrelevant here; however,
the field strength, the angle of the applied field with respect
to the easy axis, and the frequency of the forcing are crucial
parameters for the appearance of chaos. For low frequencies
and frequencies somewhat above the gyromagnetic resonance,
no chaos is found, nor is it for weak transverse fields well
below the saturation field strength. The static transverse field
is stabilizing and suppresses chaos for higher field strengths.
The parameter regions, where chaos does occur, are generally
not compact, but consist of regular areas in an almost streaky
fashion. Finally we mention that the complex structures of
the several phase diagrams reported here are large enough to
be experimentally accessible with present day technology and
provide a means of testing the reliability of the underlying
theoretical description.
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