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We report high-resolution phase diagrams for several familiar dynamical systems described
by sets of ordinary differential equations: semiconductor lasers; electric circuits; Lorenz-84
low-order atmospheric circulation model; and Rössler and chemical oscillators. All these
systems contain chaotic phases with highly complicated and interesting accumulation
boundaries, curves where networks of stable islands of regular oscillations with ever-
increasing periodicities accumulate systematically. The experimental exploration of such
codimension-two boundaries characterized by the presence of infinite accumulation of
accumulations is feasible with existing technology for some of these systems.
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1. Introduction

The aim of this work is to report a number of very high-resolution phase diagrams for
a few familiar dynamical systems with the aim of stimulating experimental work to
corroborate several new features discovered in them. A key novelty reported here is
that chaotic phases of dynamical systems modelled by coupled sets of nonlinear
ordinary differential equations contain certain parameter networks with charac-
teristic accumulation boundaries in phase diagrams, and many levels of self-similar
behaviours, as might be recognized from figures 1 and 2. Here we illustrate for a few
systems the relative abundance, shape and structuring of such networks of
accumulations seen to exist abundantly in phase diagrams.

Figures 1 and 2 are high-resolution phase diagrams obtained by computing the
spectra of Lyapunov exponents for the standard rate equation model of the laser,
defined by equations (2.1a) and (2.1b). The boundaries of the chaotic laser phases
contain certain segments (as the black–yellow transition boundary indicated by
the letter A in figure 2a) along which wide networks of islands of regular
oscillations with increasingly higher periodicities accumulate systematically. Such
accumulation boundaries, limiting curves defined by the infinite network of
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Figure 1. Phase diagrams discriminating chaos (in colours) from regularity (grey shadings). (a)
Global view of parameter space. (b) Magnification of the box seen in (a), for positive detunings:
numbers indicate quantity of peaks inside a period of the laser intensity. A, B, C and D mark small
boxes shown magnified in the next figures. (c) Magnification of box A in (b), showing a structure
similar to those recently discovered in CO2 lasers (Bonatto et al. 2005).
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islands, do not seem to have been observed before, not even for the
computationally much less-demanding discrete-time dynamical systems where
they must certainly exist. These are truly codimension-two phenomena.

Since clean and extended domains of chaos are important for a number of
applications, e.g. for secure communications (Kane & Shore 2005; Ohtsubo 2005),
it seems natural to inquire about what exactly is embedded in the seas of chaos
abundant in dynamical systems. This is the leitmotiv here, for different types of
dynamical systems. First, we discuss a semiconductor laser with injection.
2. Case study: semiconductor laser with injection

It is well known that semiconductor lasers present a rich nonlinear
phenomenologywhen subjected to optical injection, optical feedback ormodulations
(Dorn et al. 2003;Kane&Shore2005;Ohtsubo2005). Inparticular, optically injected
Phil. Trans. R. Soc. A (2008)
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Figure 2. The several types of accumulations of periodic laser oscillations (dark islands) embedded in
yellow–red sea of chaos. Numbers refer to the number of peaks of the laser amplitude. (a) The larger
central bodies accumulate towards line A while stability ‘legs’ accumulate parallel to line B. Curves A
and B meet at vertex V. Bifurcation diagrams along dotted lines, shown in figure 4, display typical
period-adding cascades which accumulate towards the four-peak domain indicated in the upper-left
corner. (b) Genesis and separation of two distinct 10/14/18// period-adding cascades. (c) Similar
genesis and separation as in (b) but now for two distinct (12)/16/20/24// cascades.
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semiconductor lasers have attracted much attention in recent years, experimentally
as well as from a theoretical and numerical point of view, as summarized in a recent
survey byWieczorek et al. (2005).

As mentioned, theoretical and numerical works based on a rate equation
model have revealed a complex structure of bifurcations in parameter space as a
function of the injected intensity and the frequency detuning. Simpson et al.
(1997) located experimentally a number of bifurcations while Wieczorek et al.
(2002) compared measurements with numerical computations, obtaining a very
good overall agreement between theory and experiments.

Theoretical calculations (Gao et al. 1999) and numerical simulations
(Hwang & Liu 2000) predicted intricate laser behaviours, including stable
solutions inside domains characterized by chaotic laser oscillations. Recently,
Chlouverakis & Adams (2003) and Fordell & Lindberg (2004) reported a series of
Phil. Trans. R. Soc. A (2008)
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stability diagramsobtainedbydirect numerical integration of the rate equations for
an optically injected semiconductor laser, where it is possible to identify various
stability islands embedded in a sea of chaos. However, notmuch is presently known
about the shape, abundance and structuring of such stability islands.

The single-mode semiconductor laser subjected to monochromatic optical
injection is well described by rescaled rate equations for the complex laser field
EZExCiEy and population inversion n

_E ZK C 1

2
ð1C iaÞnKiu

� �
E and ð2:1aÞ

_n ZK2GnKð1C2BnÞðjEj2K1Þ: ð2:1bÞ

Here, the control parameters are the intensity K of the injected field and u, the
detuning frequency. The remaining parameters are defined as usual: BZ0.0295,
GZ0.0973 and aZ2.6 (Wieczorek et al. 2002).

Figure 1 shows phase diagrams obtained by integrating the above equations
with a standard four-order Runge–Kutta scheme with a fixed step hZ0.01. The
Lyapunov spectra are computed using farming (Zeni & Gallas 1995). Parameter
grid points were colour codified according to the magnitude of the largest non-
zero exponent: regions of negative exponents (periodic solutions) are coloured
grey (black indicates zero, white the most negative values), while positive
exponents (chaotic laser oscillations) are indicated in a yellow–red scale. Red
indicates regions of stronger chaos, characterized by more positive exponents.
The colour scale of individual phase diagrams was renormalized to cover the
interval of exponents contained in the diagram.

Several bifurcation boundaries for orbits of low period as well as saddle-node
and Hopf bifurcations have been recently reported theoretically and experimen-
tally by Wieczorek et al. (2002) and Al-Hosiny et al. (2007). However, in addition
to such bifurcation boundaries, our phase diagrams show details and regularities
not observed before, now including all regions of periodic oscillations and the
regions of chaos. Our phase diagrams show the inner details and structuring of
stability domains, the regions where a recurring self-similar organization occurs
and where it fails to exist.

In a pioneering work, Eriksson & Lindberg (2001, 2002) measured
experimentally the location and magnitude of islands characterized by regular
oscillations existing inside chaotic phases of semiconductor lasers. First, they
identified a period-3 island by tuning the injection intensity for three fixed values
of the frequency detuning. Then, by repeating measurements for finer detuning
intervals, they cleverly managed to characterize a few islands of low period.
Figure 1b corroborates their low-periodic islands and shows a myriad of
additional islands of ever-increasing periods as discussed below. The figure also
displays several novel features, in particular the existence of self-similarities of
various kinds. Figure 1c displays an island with a familiar shrimp-shaped
complex structure recorded when varying two parameters simultaneously
(codimension-two phenomenon). Although well known in discrete-time dynami-
cal systems (Gallas 1993, 1994, 1995), this peculiar shrimp-shaped structure was
observed only quite recently in a continuous-time system, namely in CO2 lasers
(Bonatto et al. 2005).
Phil. Trans. R. Soc. A (2008)
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The above-mentioned striking and unexpected accumulation networks may be
easily recognized from the phase diagrams of figure 2, which present successively
magnified views of box B in figure 1b. Embedded in the chaotic region, there are
regular and abundant networks of stable islands of periodic laser oscillations with
unbounded periodicities. As figure 2a shows, the parameter networks living in the
chaotic region bridge periodic laser oscillations of increasingly higher periodicities
and which converge systematically towards well-defined and characteristic
accumulation boundaries. As indicated schematically by the numbers in figure 2a,
whenmovingalong thedark central bodies of the islandsone observes series ofperiod-
adding cascades of bifurcations, a characteristic signature of the experimentally
elusive and rather challenging homoclinic route to chaos (Braun et al. 1992).

That stability organizes along specific directions in parameter space is a well-
known fact for discrete-time dynamical systems (Gallas 1993, 1994, 1995). But
that the same is true for continuous-time dynamical system is now made obvious
by figure 2. But a rather unexpected novel feature clearly discernible in figure 2b
is the surprising way in which individual period-adding bifurcation cascades are
born. As seen, the pair of osculating white spines living inside the large dark
island of period-10 oscillations splits as the period increases, leading to separate
cascades that quickly give the impression of being uncorrelated owing to the
strong compression experienced by the islands as the period increases more and
more without bound. The white spine indicate loci of the most negative
Lyapunov exponents and are loosely ‘equivalent’ to the familiar superstable
orbits in discrete-time dynamical systems. The splitting process involves several
specific metric properties, for instance the parameter separation of the islands
accumulates to specific values while their volume decreases regularly with
characteristic exponents (Bonatto & Gallas 2007).

As another remarkable result found in phase diagrams of differential equations,
figure 3 illustrates two islands of regular oscillations with the same exquisite shape
and structuring found very recently in a rather different scenario: in a discrete-
time dynamical system with no critical points, i.e. in a dynamical system not
obeying the Cauchy–Riemann conditions (Endler & Gallas 2006). Such striking
shapes and structures exist abundantly in a continuous-time system, in the lower
portion of figure 1b. Thus, semiconductor lasers open the way to investigate
experimentally novel and sophisticated mathematical behaviours resulting from
dynamics not ruled by critical points, so far believed to be the major players in the
dynamics of complex functions (Endler & Gallas 2006).

How can one detect experimentally the existence of accumulation networks
embedded in chaos? One simple answer is provided by the bifurcation diagrams in
figure 4, showing the unfolding of the period-adding cascades, as recorded
independently for each dynamical variable, Ex, Ey and n, and the laser intensity
I hE 2

xCE 2
y. These diagrams clearly show the period-adding cascades, with the

clear alternation of windows of chaos and periodic oscillations. In these diagrams,
the numbers labelling periodic windows refer to the number of peaks present in one
period of the respective variable. However, different variables display different
number of peaks. Since the number of peaks is usually taken to label the ‘period’ of
oscillation, one sees that such labels depend on the variable used to count the peaks.
In particular, the numerical labels in figure 2 would be different had we used, say,
the population inversion n instead of the laser amplitude I to count peaks. Clearly,
the fact that local maxima of Ex and Ey occur here at distinct instants introduces a
Phil. Trans. R. Soc. A (2008)
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Figure 4. Periodic windows are easier to measure for higher values of a. (a) Bifurcation diagrams
obtained for aZ2.6 while moving along the lower (12)/16/20/24// cascade shown in figure
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Figure 3. Magnification of boxes B and C in figure 1b, illustrating differential equations, shapes and
structures identical with those found recently in maps and in a very different scenario: in systems
having no critical points. (a) Cuspidal island and (b) non-cuspidal island.
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physical systems. (a) Optically injected semiconductor laser for aZ6.0, (b) CO2 laser with
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( f ) Lorenz-84 low-order atmospheric circulation model (Bonatto et al. submitted; Freire et al.
submitted). The meaning of the parameters is defined below and in the papers quoted.
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rather complicated Lissajous-like phase dependence responsible for the number of
local maxima of I, which is very hard to predict.We observe that even in situations
where direct measurement of the laser intensity might be difficult, a feasible
alternative is to measure the spectrum of frequencies.
3. Lasers, electric circuits, Rössler and chemical oscillators

Are the regularities and accumulations described above for the optically injected
semiconductor laser also found in other dynamical systems ruled by sets of
nonlinear ordinary differential equations? The answer is yes. To corroborate our
affirmative answer, figure 5 presents phase diagrams for several rather distinct
dynamical systems without entering into discussions, due to space limitations. We
simply give equations and parameters used to generate these phase diagrams. For
additional details concerning the equations, we refer to the original references.

Interesting homoclinic phenomena are well known to exist in the following
model of a CO2 laser with feedback, as described by Pisarchik et al. (2001):

_x1 Z k0x1ðx2K1K k1 sin
2x6Þ; ð3:1aÞ

_x2 ZKG1x 2K2k0x1x 2Cgx 3Cx4CP0; ð3:1bÞ

_x3 ZKG1x3 Cx5 Cgx2 CP0; ð3:1cÞ

_x4 ZKG2x4 Cgx5 Czx2 CzP0; ð3:1dÞ

_x5 ZKG2x5Czx 3Cgx 4CzP0 and ð3:1eÞ

_x6 ZKbx6CbB0Kbf ðx1Þ; ð3:1f Þ
where f(x1)ZRx1/(1Cax1) is the feedback function. We used the same para-
meters considered by Pisarchik et al. (2001), namely G1Z10.0643, G2Z1.0643,
aZ32.8767, bZ0.4286, k0Z28.5714, k1Z4.5556 and P0Z0.016.

The third model considered here is a modification of the original Van der Pol
circuit, proposed originally by Shinriki et al. (1981). It consists of an autonomous
electronic circuit involving a resonant circuit and two nonlinear conductances,
one positive and the other negative. Motivated by the interesting circuit of
Shinriki et al. (1981), Freire et al. (1984) have shown shortly after that such
circuit displays a rich variety of dynamical behaviours. The circuit is described
by the following set of time-independent equations:

C0 _x Z ða1KG1ÞxK a3x
3Cb1ðyKxÞCb3ðyKxÞ3; ð3:2aÞ

C _y ZKG2yKzK b1ðyKxÞK b3ðyKxÞ3 and ð3:2bÞ

L _z Z y; ð3:2cÞ
where the bifurcation parameters shown in the figure are mZG1Cb1Ka1 and
dZG2Cb1, and we consider the same parameters used by Freire et al. (1984):
C0Z4.7 nF, CZ100 nF, LZ110 mH, a1/uCZ0.1, a3/uCZ6!10K4, b1/uCZ0.016
and b3/uCZ0.05.
Phil. Trans. R. Soc. A (2008)
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The fourth model considered is the 40-year-old equations introduced by
Rössler (1976)

_x ZKyKz; ð3:3aÞ

_y Z xCay and ð3:3bÞ

_z Z bCzxKzc: ð3:3cÞ

In our simulations, we fixed ah0.2.
The next model considered represents a time-periodically forced chemical

oscillator studied by Vance & Ross (1989) and Hou & Xin (1999) and described
by the equations

_x Z 1KxKxDEðyÞCpðtÞð1KxÞ and ð3:4aÞ

ð1CeÞ _y ZKbyCBDEðyÞKpðtÞðyKgÞ; ð3:4bÞ

where

EðyÞZ exp
y

1Chy

� �
and pðtÞZA sin

2pt

tT0

� �
: ð3:5Þ

Here, following Vance & Ross (1989) and Hou & Xin (1999), we also considered
their point P2Z( j, Tc)Z(0.8, 292) where the system exhibits self-oscillations
with period T0Z4.1627372 in absence of forcing. The other parameters are
the following: eZ0.65; T�Z885.843jC11.02Tc/(2.7jC11.02); hZT�/8827;
DZ8.2365!1010eK1/h/j; BZ271.46/(hT�); and bZ1C4.08/j. As indicated in
figure 5, the bifurcation parameters are A and t. Our figures contain a wealth of
new details, including cascades of accumulations.

Finally, we also considered Lorenz-84 low-order atmospheric circulation model
(Lorenz 1984), a model containing rich accumulations and homoclinic
phenomena with meteorological implications (Freire et al. 2007):

_x ZKy2Kz2KaxCaF; ð3:6aÞ

_y Z xyKyKbxzCG and ð3:6bÞ

_z Z bxyCxzKz: ð3:6cÞ

As usual, we also considered the dynamics when fixing aZ0.25 and bZ4.
Each of these systems has a number of additional interesting aspects involving

homoclinic phenomena and their consequences inside chaotic regions in
parameter space. These are discussed in detail elsewhere. Here, the purpose is
simply to emphasize that the accumulations and the accumulation of
accumulations lying in ‘simple’ curves are generic phenomena found profusely
in nonlinear systems of ordinary differential equations. Note that while
differential equations have been around for quite a while, thus far no phase
diagrams reporting the hierarchical structuring of the chaotic phases seem to
exist in the literature.
Phil. Trans. R. Soc. A (2008)
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4. Final remarks

We have shown that chaotic regions in phase diagrams of a number of
dynamical systems ruled by sets of nonlinear ordinary differential equations
contain very peculiar hierarchies of parameter networks ending in distinctive
accumulation boundaries characterized by an infinite amount of accumulation
of accumulations, with very rich and interesting structuring. The systems
discussed here were semiconductor lasers with optical injection, CO2 lasers
with feedback, autonomous electric circuits, the Rössler oscillator, Lorenz-84
low-order atmospheric circulation model and a chemical model. Since
accumulation of accumulations was found in all these distinct physical
models, we believe them to be the generic features of dynamical systems of
codimension-two and higher.

The network of regularity islands found to exist embedded in chaotic phasesmay
compromise applications depending on ‘smooth and clean domains of chaos’ such as
secure communications. The parameter networks reported here pose an interesting
question that remains to be investigated: in sharp contrast with discrete dynamical
systems, where periods vary in discrete units, an appealing new possibility afforded
by lasers is to study how periodicities defined by continuous real numbers evolve in
phase diagrams when parameters are tuned. Additionally, another enticing
question is whether or not it is possible to infer the presence of homoclinic orbits
in phase space from regularities computed/measured solely in the parameter space.
Are there clear parameter-space signatures of homoclinic orbits? Is it possible to
recognize the location of parameter loci characterizing simple and multiple
(degenerate) homoclinic phenomena in phase diagrams? These questions are the
subject of a separate work.

The few points addressed here so far do not exhaust the richness of phenomena
found in phase diagrams of continuous-time dynamical systems. As a last
example, figure 6 illustrates families of isoperiodic parameter circles found in a
CO2 laser with modulated losses. The equations and parameters used to produce
figure 6 are those of Bonatto et al. (2005), with a single exception: here we use
z0Z0.18. When changing parameters inside such circles, the shape and the
length of the periodic signals change but the number of peaks inside the circle
period remains the same. An obvious question is that concerning the unfolding of
these circles when other model parameters are varied, i.e. when considered as
higher codimensional events. We have also seen a profusion of infinite hierarchies
of nested spirals. This needs to be investigated.

As a last remark, it is perhaps interesting to emphasize that while accumulating
regions of periodic orbits in optically driven lasers have been recently reported by
Krauskopf & Wieczorek (2002), the phenomenon they describe is rather different
from those reported here. For, as summarized in the comparisons presented in
figure 7, they consider domains of periodic orbits, not regions of chaos as we do.
Their accumulations involve saddle-node–Hopf bifurcations while ours do not.
They investigate accumulations towards a fixed point while ours involve more
complex objects. In addition, note that while Krauskopf &Wieczorek (2002) argue
period-adding routes to chaos not to be present in semiconductor lasers, we find
such routes to occur in profusion. A detailed discussion of these matters will be
presented elsewhere.
Phil. Trans. R. Soc. A (2008)
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