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a b s t r a c t 

We report the discovery of wide nested sequences of period-adding complexification routes spawning the 

whole control parameter space of the Hénon map, a discrete-time proxy of single-mode loss-modulated 

CO 2 lasers. For a realistic map, the new adding routes found reproduce analogous phenomena previously 

observed in continuous-time differential equations describing, for instance, oscillatory phases in an en- 

zyme reaction model. In contrast to differential equations, the map is analytically tractable to a large 

extent, and provides a prototypic framework to investigate intricate features of generic dissipative flows. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Period doubling and period adding are two familiar routes to 

omplex dynamical behaviors in dissipative physical systems, the 

atter more elusive than the former [1–4] . Adding phenomena were 

bserved experimentally as far back as 1927 by van der Pol and 

an der Mark [5,6] . In 1990, Levi [7] studied period adding gen- 

rated by a circle map and outlined how the phenomenon arises 

or a whole class of van der Pol-type systems under periodic forc- 

ng. He also argued that the noise observed in the van der Pol sys- 

em can be explained by the appearance of Hénon-like attractors. 

he dynamics of these electronic circuits is governed by differen- 

ial equations, i.e. by continuous-time models [1–4] . 

More recently, series of unexpected nested spike-adding cas- 

ades were found in the stability phases of Olsen’s enzyme re- 

ction model, which describes the concentration of chemicals re- 

ponsible for the enzyme reaction [8] . Remarkably, Olsen’s model 

nvolving just four coupled differential equations and nine con- 

rol parameters was found to reproduce well features known to be 

haracteristics of a sophisticated state-of-the-art model of the reac- 

ion [9,10] , involving ten coupled equations and fourteen rate con- 

tants. Periodicity in Olsen’s flow was found to be prevalent over 

haos. A number of regularities were reported, in particular unex- 

ected nested sequences of period-adding stability phases. 
∗ Corresponding author. 

E-mail address: jason.gallas@gmail.com (J.A.C. Gallas). 
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Fig. 1 shows a representative example of a parameter win- 

ow containing nested spike-adding colorful sequences of stabil- 

ty phases computed for Olsen’s flow. From this figure one recog- 

izes that stability phases accumulate in several different ways, ex- 

ending as far as the eye can discern. The characteristic signature 

nderlying Fig. 1 is that the stability phase with largest volume 

etween the phases with 4 and 5 spikes is a 9-spikes phase, the 

argest phase between 9 and 4 spikes contains 13 spikes, etc. 

The purpose of this paper is to report the observation of a 

ested period -adding phenomenon in a mapping, a discrete-time 

nalog of the nested spike -adding scenario observed in Olsen’s 

ow. Note that discrete-time dynamical systems do not displays 

pikes and this is the reason for the distinct name. We found 

eriod-adding in a familiar and well-studied discrete-time dynam- 

cal system, namely the two-dimensional smooth dissipative Hénon 

ap which, among other things, is a discrete-time proxy of single- 

ode loss-modulated CO 2 lasers [13–16] . More specifically, we 

eport detailed stability charts for the weak dissipative | b| → 1 

amiltonian limits of the Hénon map 

 t+1 = a − x 2 t + by t , y t+1 = x t . (1) 

nteresting results regarding period-adding in piecewise non- 

mooth maps having two discontinuities have been reported by 

ramontana et al. [17] , and in the references therein. In sharp con- 

rast, the Hénon map studied here is smooth and has no critical 

oints [18] . 

The Hénon map ranks among the most widely studied systems 

hich exhibit strange attractors and chaotic behaviors. It was orig- 

https://doi.org/10.1016/j.chaos.2021.111180
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111180&domain=pdf
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Fig. 1. Spike-adding sequences of stability phases observed in a the k 1 and k 2 con- 

trol plane of a flow system, namely in the differential equations of Olsen’s enzyme 

reaction [8] . Black denotes chaos, colors indicate periodic oscillations. The phase 

with largest volume between the phases with 9 and 4 spikes contains 9 + 4 = 13 

spikes, then 13 + 4 = 17 , 17 + 4 = 21 spikes, etc extending as far as the eye can dis- 

cern. For selected phases, numbers indicate the number of spikes (local maxima) 

per period of the oscillations, plotted recycling colors modulo 19 . This figure dis- 

plays 1200 × 1200 parameter points. 
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Fig. 2. Period-adding cascades of the Hénon map, issuing from the three boxes 

B 1 , B 2 , B 3 , shown magnified below in Figs. 3 and 4 . Colors represent stability phases 

with numbers indicating the periodicity of some of the larger individual phases. 

White indicates chaos while D marks parameters leading to divergence. N and A re- 

fer to the nose and antinose [11,12] , the two apparently sharp vertices on the outer 

boundary of the phase of chaos. Periods are plotted recycling colors modulo 19 (see 

text). Each panel displays the analysis of 1200 × 1200 parameter points. 

Fig. 3. Magnification of the box B 1 seen in Fig. 2 , illustrating nested period-adding 

sequences near b = 1 . Red numbers refer to substripes embedded in larger stripes. 

Apparently, this box contains only even periods. This figure displays the analysis of 

1200 × 1200 parameter points. Basins of attraction for the three sets of three points 

along the line b = 0 . 972 are shown below in Fig. 5 . The color coding is the same as 

in Fig. 2 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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nally introduced as a simplified version of the celebrated Lorenz 

963 model of atmospheric convection [1–4] . The map was found 

o reproduce strikingly well stability diagrams obtained from dif- 

erential equations representing the standard four-level model of a 

O 2 laser with modulated losses [13–16] . For a recent survey see, 

.g. Ref. [19] . Appealing physical interpretations of Hénon’s map 

ere given by Heagy [20] . The control parameter space of the map 

s known to display several regularities [11] . Additional properties 

f the Hénon map were also extensively discussed in the last pub- 

ication of Lorenz [21] , considered one of the founding fathers of 

haos theory [22] . Before starting, we mention that the Hamilto- 

ian limit was already explored for another familiar map, namely 

or a kicked rotor [23] . 

Theoretically, a startling novelty is to observe the ubiquitous 

resence of adding-cascades in a system with no critical points 

18] , which are normally used to classify stability properties of dy- 

amical systems [1–4] . The dissipation strength in Eq. (1) is con- 

rolled by the Jacobian −b, which varies in the interval −1 ≤ b ≤ 1 . 

tability charts are already available [11] for the region of strongest 

issipation, roughly long the stripe −0 . 6 ≤ b ≤ 0 . 8 . In this region

ne finds a wide chaotic phase containing many regularities em- 

edded in it like, e.g. shrimp cascades [11,21] . As it may be seen

rom Figs. 1–3 in Ref. [11] , the wide phase of chaos, the white re-

ion seen here at the center of Fig. 2 , is crisscrossed by numer-

us long and narrow stripes of stable periodic oscillations whose 

rigin and organization does not seem to have been ascertained 

et. As shown below, we find such narrow stripes to originate from 

he Hamiltonian limits of the map, namely from the limits b → ±1 . 

herein lies the rub: These limits are notoriously difficult to handle 

ecause the vanishing dissipation implies an ever growing multi- 

tability and a large increase of the transient times needed to reach 
2 
nd distinguish asymptotic attractors unambiguously. The Hamil- 

onian limit is where every initial condition turns into an individ- 

al attractor and, therefore, where the number of attractors grows 

ithout bound [23–25] . 

Before proceeding, we mention that parameter charts with vari- 

us degrees of accuracy and covering the full range −1 ≤ b ≤ 1 are 
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Fig. 4. Magnification of boxes B 2 and B 3 in Fig. 2 , illustrating nested sequences 

of period-adding cascades near b = −1 . White numbers refer to substripes (see 

Section 2 ). Each panel displays the analysis of 1200 × 1200 parameter points. Basins 

of attraction for the three sets of three points along the line b = −0 . 996 are shown 

below in Fig. 6 . The color coding is the same as in Fig. 2 . 
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vailable in the literature, for instance in Refs. [26–28] . However, 

hey consider at most periods k = 7 . Below we report systematic 

esults for substantially larger periods. 

. Period-adding in the Hénon map 

Fig. 2 shows a global view of the control parameter space of 

he Hénon map, indicating with colors the main features present 

n this phase diagram. The regions of premier interest to us are 

asically those contained in the three boxes B1–B3 shown magni- 

ed below in Figs. 3 and 4 . As in Ref. [11] , colors in these figures

efer to the asymptotic periodicity of the oscillations recorded for 

ach point (a, b) . In Figs. 2–4 , the a × b control plane is seen to

e riddled with multistability, namely with stripes or, equivalently, 

ith phases displaying the overlap of two or more colors, a clear 
3 
ndication of the existence of more than one stable asymptotic os- 

illation for a given parameter point (a, b) . To increase the infor- 

ation content of the phase diagram, in presence of multistability, 

he solution plotted in Fig. 2 (and all other ones below) is the one 

aving the smallest basin of attraction in the parameter window 

onsidered. The smallest the basin, the higher the period. 

The orbital periodicity is plotted on a discrete grid contain- 

ng 1200 × 1200 equally spaced points (a, b) . For each point (a, b) ,

p to 150 × 150 = 22 , 500 initial conditions (x 0 , y 0 ) covering suit-

ble regions in phase-space were iterated for Eq. (1) . In this way, 

asins of attraction and histograms classifying all coexisting or- 

its are produced. The largest period k found was then used to 

olor the point (a, b) in Fig. 2 , according to the color table shown

n the figure. Orbits having periods k > 19 are represented mod- 

lo 19 , namely by periodically recycling the 19 colors shown in the 

olor table in the figure. Since the relative size of basins of attrac- 

ion varies when parameters are changed, it was sometimes nec- 

ssary to use finer initial conditions grids. For instance, near the 

on-dissipative limits | b| = 1 , grids containing up to 400 × 400 = 

 . 6 × 10 5 initial conditions were considered. The investigation of 

he Hamiltonian limit is a computer intensive task, due to the sig- 

ificant increase of transients and multistability as | b| → 1 . 

As may be seen from Fig. 2 , period-doubling cascades emerge 

o the right of the large period-one stability phase, in the direction 

f increasing a . In addition to such phases characterized by period 

oubling, it is also possible to see many additional phases with the 

orm of triangular stripes, originating from both limits b = 1 and 

 = −1 . Each such phase has an individual period-doubling cas- 

ade which, however, becomes thiner and thiner very fast when 

 increases. A clear regular pattern in the organization of these tri- 

ngular phases emerges when one considers as a reference point 

heir leftmost points (the smaller a ) along the | b| = 1 lines. For ex-

mple, looking at the bottom of Fig. 2 , one sees that: i) The largest

tability phase between the period-one and -two is a phase with 

eriod k = 1 + 2 = 3 . ii) The largest stability phase between the

eriod-one and -three is a phase with period k = 3 + 1 = 4 . iii) The

argest stability phase between of period-one and -four is a phase 

ith period k = 4 + 1 = 5 , and so on. Although in these examples

ne of the reference phases was always the period-one phase, the 

ame rule remains valid for any arbitrary pairs of phases. For in- 

tance, on the top of Fig. 2 the largest phase between periods 

our and two has period k = 4 + 2 = 6 . The period-ten phase is the

argest one between period-eight and period-two phases, and so 

orth. 

Figs. 3 and 4 show magnifications of the boxes B1–B3 in Fig. 2 .

rom Figs. 3 and 4 one recognizes that the period-adding rule 

pplies in general, namely that the largest stability phase between 

hases with periods k 1 and k 2 is a phase with period k = k 1 + k 2 . This

s the main message of this paper: period-adding cascades exist in 

rofusion in the Hénon map. 

As the period increases, notice that the phases start to overlap 

ignificantly and to converge to some accumulation point on the 

ines | b| = 1 . This makes visualization of the reference points of 

verlapping phases relatively difficult because, as explained above, 

he pictures are colored according to the orbit with largest peri- 

dicity. This overlapping between “main” phases is not to be con- 

used with the overlapping of “subphases” and their correspond- 

ng main phases. We call subphases the structures that emerge be- 

ween the reference point of a main phase and the reference point 

f the period-doubled phase that originates from it. Their periods 

re marked with red numbers in Fig. 3 and with white numbers in 

ig. 4 . 

While two main phases may overlap only partially, a subphase 

s always contained entirely within its main phase. Although not 

isible in Fig. 2 , subphases within a main phase may overlap each 

ther as their period increases and they accumulate. Furthermore, 
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hey also undergo a period-doubling cascade process, presenting 

sub-subphases”. This organization scheme, as well as the period- 

dding rule, may be recognized at all “levels” in the control param- 

ter space. An interesting open question is to determine whether 

r not the number of period-added phases is finite or not. To con- 

lude this section, we mention that it is possible to define rota- 

ion numbers and to use them to establish a hierarchical structure 

mong stability phases, similar to the hierachy known for the Man- 

elbrot set. These results, however, are beyond the scope of the 

resent work and will be reported elsewhere. 

. Basin of attraction in the Hamiltonian limits 

Phase diagrams like the ones in Figs. 2–4 are usually comput- 

ng by “following the attractor”, namely by starting numerical in- 

egrations from some selected parameters and using the numerical 
ig. 5. Illustrative example of the steady decrease of basin volume when a increases alon

olumes are indicated inside the individual panels. The pink background denotes initial c

eferences to color in this figure legend, the reader is referred to the web version of this 

4 
alues of the variables obtained at the end of an integration as the 

nitial values to start new calculations after incrementing a param- 

ter of interest. This procedure tends to select initial conditions 

rom a fixed basin of attraction, normally the basin with largest 

olume in phase space. However, this procedure does not work if 

ne wishes to compute phase diagrams close to the Hamiltonian 

imit. That this is so may be appreciated from Figs. 5–7 . 

Fig. 5 presents a representative illustration of the changes un- 

ergone by the basins of attraction when a increases along a fixed 

and arbitrary) value of b inside box B1, viz. b = 0 . 972 . Basin col-

rs where selected to maximize contrast in the figures and may 

iffer from the colors used in Figs. 2–4 . As seen from Fig. 2 , along

his line the period-adding cascades unfold against a background 

f period-two orbits. Therefore, to be able to display the period- 

dding cascades, we avoid plotting period-two orbits, and plot or- 

its with suitably higher periods. As one moves from a = 0 . 401 
g the line b = 0 . 972 , shown in Fig. 3 . The orbital periods and corresponding basin 

onditions leading to the attractor at infinity (divergence). (For interpretation of the 

article.) 
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Fig. 6. Illustrative example of the attractor variation as a increases along the b = −0 . 996 line, indicated in box B3 in Fig. 4 . The orbital periods and corresponding basin 

volumes are indicated inside the individual panels. The pink background denotes initial conditions leading to the attractor at infinity (divergence). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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 Fig. 2 (a)) to the last panel for a = 0 . 754 ( Fig. 2 (i)), there is a strong

eduction of the volume of all basins, e.g. the period-two basins 

ecreases from 17.56% to 0.49%. The basin of the unbounded at- 

ractor at infinity (divergences) grows substantially, something that 

eems counterintuitive when contemplating the large and smooth 

xtension of the period-one and period-two phases in Fig. 2 . Thus, 

ne sees that extra care is needed to make sure to select and plot 

he relevant basins in order to display the period-adding cascade. 

Fig. 6 shows basins of attraction for nine values of a along the 

ine b = −0 . 996 , inside box B3 in Fig. 4 . Despite the fact that the

agnitude of b is now much closer to 1 than in Fig. 5 , the basin

olumes remain much more constant, in sharp contrast to what is 

een in Fig. 5 . When compared with Fig. 5 , the main changes occur

n the periods and shapes of the basins which coexist with periods 

ne and two. While these two basin keep their volumes relatively 

onstant, the volume of the basins embedded in them vary con- 
5 
iderably. Although all basins in Figs. 5 and 6 are clearly fractal, 

he period-two “core” of the basins in Fig. 6 (d) and (e) are smooth, 

ith fractality showing up only as outer filaments. In other words, 

heir cores do not contain other basins embedded in them. 

Finally, Fig. 7 shows successive magnifications of the basin ob- 

ained for a = −0 . 44 and b = −0 . 99999 , a magnitude much closer

o 1 as before. The individual panels where computed after dis- 

arding 2 . 7 × 10 6 initial iterates, regarded as transient needed to 

ome close to the asymptotic attractors. An exception is Fig. 7 (f) 

here transients of 4 × 10 6 initial iterates were discarded. As it is 

lear from this figure, the number of distinct attractors seems to be 

rowing without bound as b → −1 . Indeed, in this limit the basins 

f attraction already show great similarity with the familiar phase- 

pace diagrams of Hamiltonian systems. Again, this behavior seen 

n Fig. 7 emphasizes the need for special care when following the 

mpact of parameter changes in this complex limit. 
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Fig. 7. Successive magnifications illustrating the unbounded growth of the number of distinct attractors when approaching the Hamiltonian limit, here for a = −0 . 44 and 

b = −0 . 99999 . Each panel show results of the analysis of a grid containing 1200 × 1200 = 1 . 44 × 10 6 initial conditions. The pink background denotes initial conditions leading 

to divergence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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. Conclusions and outlook 

In summary, this work describes the discovery of wide nested 

equences of period-adding complexification routes spawning the 

ontrol parameter space of the Hénon map, a discrete-time proxy of 

ingle-mode loss-modulated CO 2 lasers. For a realistic and smooth 

ap, the new adding routes being reported reproduce analo- 

ous phenomena observed previously in continuous-time differen- 

ial equations which describe, for instance, the oscillatory phases 

f an enzyme reaction model. All structures described in this work 

re stability phases and, therefore, are directly accessible to exper- 

mental observation. While period-doubling has been extensively 

tudied during the last four decades, period-adding and the possi- 

ility of other routes to complex oscillations have not yet received 

uch attention. The discovery of period-adding in the Hénon map 

ugments significantly the knowledge about the organization of 

eriodic orbits supported by a popular map that has been under 

lose scrutiny for so long. 

An interesting open problem is to study the organizational 

tructure of the branching of attractors and basins as one ap- 

roaches the Hamiltonian limit. Here we investigated the system- 

tic organization of the attractors having the next-to-largest basins 

f attraction. But what sort of regular organizations lie beneath the 

mmense set of additional basins which emerge more and more as 

e march steadily towards | b| = 1 ? How are such organizations in-

errelated? A startling and enticing theoretical aspect of the Hénon 

ap is the possibility to study the ubiquitous presence of period- 

dding cascades in a system without critical points [18] , the points 
6 
nvariably used to classify stability properties of dynamical systems 

1–4] . 

Additional interesting open problems are the following. First, 

o understand the dynamical origin and the differences, if any, 

hat give rise to the nose N and antinose A [11] , the two most 

alient vertices [12] located on the outer boundary of the white 

hase of chaos seen in Fig. 2 . Second, to find the reason for the

resence of the wide gap seen in Fig. 2 between boxes B2 and 

3, and where apparently no stability windows exist. Are such 

ery salient features arising because of an accumulation of stabil- 

ty boundaries? Third, to discover why box B1 in Fig. 3 seems to 

ontain only phases with even periods. Fourth, are there boundary 

oints belonging simultaneously to five distinct stability phases, 

ike the quint points recently discovered in a flow governing a 

riven Belousov–Zhabotinsky reaction [29] ? 

The Hénon map is analytically tractable to a large extent, and 

pens the possibility to investigate intricate and unexplored fea- 

ures in both maps and dissipative flows. A deeper understanding 

f the nested sequences of period-adding stability phases in the 

énon and other maps will likely require new insights on the na- 

ure of the towers of algebraic numbers underlying their arithmetic 

enesis and the nature of the accumulation points generated by 

hem. 
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