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Recent methods for stabilizing systems like, e.g., loss-modulated CO2 lasers, involve inducing controlled
monostability via slow parameter modulations. However, such stabilization methods presuppose detailed
knowledge of the structure and size of basins of attraction. In this Brief Report, we numerically investigate
basin size evolution when parameters are varied between dissipative and conservative limits. Basin volumes
shrink fast as the conservative limit is approached, being well approximated by Gaussian profiles, indepen-
dently of the period. Basin shrinkage and vanishing is due to the absence of bounded motions in the Hamil-
tonian limit. In addition, we find basin volume to remain essentially constant along a peculiar parameter path
along which it is possible to recover the dissipation rate solely from metric properties of self-similar structures
in phase-space.
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A characteristic feature of nonlinear systems is that they
often exhibit more than one dynamic equilibrium state for
the same value of model parameters. Some states may be
chaotic while others are regularsperiodicd. The coexistence
of several dynamic equilibrium statessattractorsd was ob-
served quite early inQ-switched CO2 lasers and calledgen-
eralized multistabilityf1g. Several recent studies have shown
multistability to be a property that may be profitably ex-
ploited in a variety of ways in lasers and other systems. For
instance, multistability may be induced or suppressed by
weak periodic perturbationsf2–4g, it is possible to control
and limit the emergence of multistabilityf5–7g, the phenom-
enon of noise-induced preference of attractors as well as the
detection of multiple stable states and attractor hopping was
also investigatedf8g. Underlying all these widespread stabi-
lization procedures is a need for detailed knowledge of the
structure and extension of basins of attraction in phase-space.
For instance, a riddled phase-space severely restricts any
possibility of stabilization and is prone to catastrophic bifur-
cations from riddled to fractal basinsf9g. This restriction is
particularly severe in coupled systemsf10,11g.

Here we report an investigation of basin size evolution
when parameters are varied between dissipative and conser-
vative limits. The model investigated is the standard example
in the field f3,7,10,12g, the Hénon mapsx,yd° sa−x2

+by,xd, which affords ease of computation and clarity of
presentation apart from well-modeling CO2 lasers in the limit
of strong dissipationf12g. Of interest is to investigate how
basin sizes change when moving between dissipative and
conservative limits. As is known, while conservative systems
are plagued by chaos for quite large sets of initial conditions,
the dissipative limit with about the same complexity displays

chaos only on relatively limited domains of the parameter
spacef13,14g. The subtleties of the passage between conser-
vative and dissipative limits have been discussedf15g. Expo-
nential decay of basin size evolution was found recently for
the Hénon mapf16g, along the characteristic path in param-
eter space where strange attractors disappearf17,18g.
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FIG. 1. sColor onlined Top: Schematic view of boundaries be-
tween stability regions. Numbers label bifurcation loci: 1 marks the
0→1 saddle-node bifurcation, 2 marks the 1→2 bifurcation while
4 marks the 2→4 bifurcation.U andL refer to the upper and lower
branches of theeigenvalue pathssee textd. The dashed rectangular
box is shown magnified in the lower part of the figure. Bottom:
Phase diagram showing the intricate alternation of stability domains
underlyingL branch of the eigenvalue pathEsa,bd. Different shad-
ings denote different periods. Encircled numbers indicate the peri-
odicity of the underlying domain. White represents chaos. The basin
of unbounded attractors is indicated by −`.
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Although questions related with basin volumes are of an
elementary nature, their answers are nevertheless quite hard
to come by: lacking adequate theoretical means to even es-
timate the answers, one needs to resort to intensive numeri-
cal computations, which we do here.

The exact description of the dynamics of a system which
suffers a transition from conservative into dissipative is also
very important in other contexts like, for example, energy
transfer dynamics in system plus environment modelsf19g,
irreversibility in complex systems, charge and energy trans-
fer in quantum molecular systemsf20g, and even in describ-
ing dissipation in quantum mechanicsf21g. Presently, the key
motivation for investigating basin evolution is the need for
uncovering flexible and realistic maps to be used as discrete
oscillators ruling local dynamics in lattices typically used in
practical applications such as, for example, in simulations of
aspects of ocean convectionf22,23g, particularly those con-
nected with complex lattice topology and evolutionf24–26g.

Most of the time, parameter changes produce only minor
modifications in the dynamical behavior. But while moving
between dissipative and conservative limits one eventually
crosses parameter paths like, for instance, stability or bifur-
cation loci, that are particularly interesting in several respects
f17g. Here we concentrate on properties measured along a
few of the simplest paths which are very convenient because
they are all known analytically: the lines delimiting the
boundaries of stability domains for low period oscillations
and a very peculiareigenvalue pathf27g along which one
may recover the dissipation rate by measuring the scaling of

certain fractal fingers that appear in phase space.
Figure 1 illustrates the complex alternation of stability

islands seen in a particularly crowded region of parameter
space where we want to investigate basin size evolution. It
was generated as described in Ref.f17g and concentrates on
the physically meaningful strip −1øbø1. The wide white
domain located roughly along the “main diagonal” of the
figure represents parameters leading to stable chaotic solu-
tions. The different shadingsstonalitiesd embedded in the
white background represent stability islands of periodic at-
tractors, different shadings denoting different periodicity.
The large region on the upper right corner signals parameters
leading mainly to unbounded solutions, i.e., to the attractor
located at infinitysdivergenced.

Basin size evolution is studied along the parameter paths
delimiting stability regions for trajectories of periods 1, 2,
and 4. Such boundaries are the roots of the expressions

Usa,bd ; a +
1

4
s1 − bd2 = 0, s1d

Dsa,bd ; a −
3

4
sb2 − 2b + 1d = 0, s2d

Qsa,bd ; a −
1

4
s5b2 − 6b + 5d = 0. s3d

The aforementioned eigenvalue path contains an upper
branchU and a lower branchL, which may be easily ob-
tained by solvingEsa,bd=0, wheref27g

Esa,bd = 4ab2 − fsb + 1d4 − b2gsb − 1d2. s4d

For Eqs.s1d–s4d, we determined the volume of basins of
attraction for a total ofN=2000 parameter valuesP,

;sa, ,b,d , ,=1,2,… ,N equally distributed along the bifur-
cation curves and located inside the strip −1øbø1. Figure 2
shows typical basin shape and volume for representative pa-
rameters along the 2→4 bifurcation locus. As seen, basins
are quite small near the conservative limitb=1 and the limit
b=−1. The figure also shows that basins may be fractal for
certain parameters. The pair of black basins in Figs. 2sbd and
2scd are computed for the parameters indicated by black dots
in the lower part of Fig. 1. As evident from Figs. 2sad and
2sdd, basins are already quite small forb=−0.8 andb=0.9
although one is still far from the limitsubu=1. Basin volumes
are maximal nearb.0.

For each set of parametersP, we determined histograms
of the periodicities observed in phase-space inside the win-
dow −2.5øxø2.5 and −11øyø11, discretized with a reso-
lution of 1003100 points. This window contains the largest
portion of “useful” initial conditions, namely those not in the
basin of infinity.

Figure 3sad displays the fraction of the 104 initial condi-
tions that do not diverge while moving fromb=−1 to b=1
along three lines: the saddle-node 0→1 line sindicated by 1d
and the 1→2 and 2→4 bifurcation lines. As seen, the vol-
ume increases with the unfolding of the bifurcation cascade.
Furthermore, independently of the period, the volume tends
to zero nearb=−1 andb=1, the conservativesHamiltoniand

FIG. 2. sColor onlined Illustrative basins computed for four dif-
ferent set of parameters along the 2→4 bifurcation line, defined by
Eq. s3d: sad sa,bd=s0.9125,0.9d; sbd s1.042, 0.16d; scd s2.05, −0.4d;
sdd s3.25, −0.8d. The gray shading indicates the basin of −`, black
gives the basin of the periodic motion.
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limit, attaining its maximum value forb=0, the limit where
the map is noninvertiblesnondiffeomorphicd. Figure 3sad
also shows a few abrupt discontinuities, which simply indi-
cate regions where there is multistabilityf1g. Of course, no
discontinuities exist when all coexisting periods are added.
We computed histograms using different discretizations and
believe Fig. 3sad to be accurate and representative. Figure
3sbd displays the overlap of five curves, showing basin vol-
ume as a function of the dissipationb for periods 8, 16, 32,
64, 128, and 256. The five curves overlap almost identically.
Small differences appear only in intervals where multistabil-
ity is present.

One discovers a number of interesting features when com-
puting histograms along the branchL of eigenvalue path
Esa,bd=0. For instance, we have been able to numerically
follow basin evolution for the 332n cascade during 6 bifur-
cationssup to period 96d. During this rather long unfolding,
the basin size remains essentially constant, reproducing the
behavior described above for the 132n cascadefsee Fig.
3sbdg. The volume of the coexisting period-2 basin also re-
mains essentially constant in this interval of parameters. This
shows that while intervals of stability in parameter space
suffer strong compression as the bifurcation unfolds, basin
volumes remain essentially unchanged. In other words, the
immense difficulty to locate stable motions of high periodic-
ity is linked only to the narrowness of parameter intervals,
not to a decrease of basin volume.

A number of additional cascades are crossed when mov-
ing alongL up to b=−0.262 99, for instance those starting
with periods 9, 15, 21, 27, 33, 45, 63, 75, and 105. All these
periodic cascades are separated by intervals where chaos pre-
vails. Beyondb=−0.262 99 one finds a sequence of attrac-
tors as summarized in Table I where, to save space, a few
very small windows were omitted in some specific intervals.
The last column in Table I gives the percentage of points not

in the basin of −̀ . As seen, even though there is a large
variation of dynamical behaviors in this region, basin sizes
remain essentially constant as before.

From Fig. 3 one sees that the basin volume decreases fast
as ubu→1. To characterize this decrease we attempted fitting
both a Gaussian and a log-normal to the volume distribution
as a function of theb. However, since no significant im-
provement was found when using log normals, we only
present here, in Fig. 4, the standard deviationss obtained
when fitting Gaussians to basin volumes for motions with
periods 1, 2, 4, 8, 16, 32, 64, 128, 256, and chaos. The point
at the right of the dotted line in the figure indicates a rough
estimate of the standard deviation of the basin volume at the
end of the periodic motions of the 132n cascade. The esti-
mation of basin volumes at this extreme situation is much
less certain than for periodic points. As is clear from Fig. 4,
the standard deviation does not converge to any limit value,
a fact that seems to agree well with reportsf28g concerning
the basin size shrinkage factor with the period of the periodic
attractors in connection with the unstable eigenvalue of the
periodic orbit.

The Gaussian profiles reported here do not seem to be
“universal.” Exponentials were foundf16g for the basin size
evolution for the Hénon map along a path in the parameter
space where the strange attractordisappearsf17,18g. In con-
trast, here the parameter path is the boundary where the cha-
otic attractor is born. In addition, we offer an explanation for
an interesting question posed by Feudelet al. f16g, concern-
ing how rare are chaotic basins in presence of multistability.
Our figures show that not only are basins of chaotic attrac-
tors rare, but also rare are all basins related to periodic orbits.
This property is not due to the multistability of the dynami-
cal system, but arises from theopen dynamicsexistent in the
conservative limit of the Hénon map. In the Hamiltonian
limit, there is no bounded motion: all orbits go to infinity and
therefore basin sizes of all periodic or chaotic attractors sim-
ply do not exist anymore. In the dissipative limit most of
these points remainsdue dissipationd confined to a finite re-
gion of the phase space.

FIG. 3. sad Basin volume for the three lowest periods of the 1
32n cascade, as a function of the dissipationb. sbd Overlap of five
curves, showing basin volume as a function of the dissipationb for
periods 8, 16, 32, 64, 128, and 256. The five curves overlap almost
identically. The only noticeable differences involve intervals where
multistability is present, e.g., the period-3 window indicated by 3.

TABLE I. Basin size variation relative to the basin of −`. The
interval corresponding to period 36 is very narrow. The first mem-
ber of the 132n cascade lies outside the parameter interval consid-
ered in the table.

Attractorssd b interval a interval %

2, 4, …, 64 f−0.26298,−0.24060g f1.30261, 1.82574g 35

Chaos f−0.24059,−0.24012g f1.82601, 1.83878g 35

12, 24 f−0.24011,−0.24007g f1.83906, 1.84015g 34

36 −0.24005 1.84069 34.5

Chaos f−0.24004,−0.23978g f1.84097, 1.84807g 35

6, 12,…, 48 f−0.23977,−0.23946g f1.84835, 1.85685g 35

Chaos f−0.23945,−0.23918g f1.85713, 1.86457g 34

10 f−0.23917,−0.23915g f1.86485, 1.86512g 34

Chaos f−0.23913,−0.23643g f1.86595, 1.94198g 34

7, 14, 28 f−0.23642,−0.23640g f1.94227, 1.94284g 32

Chaos f−0.23639,−0.23349g f1.94313, 2.02812g 33
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In summary, basin sizes remain essentially constant as
bifurcation cascades unfold, when the dissipation rate does
not vary too much. On the other hand, there is a drastic drop
in volume as one moves from the dissipative to the conser-
vative sHamiltoniand limit. As the conservative limit is ap-
proached, Gaussian profiles are found along stability bound-
aries between periodic orbits. Near the conservative limit, all
basin sizes vanish for systems which have no bounded mo-
tions. These results are robust upon changes of the discreti-
zations involved in their derivation and are insensitive to the
rectangular domain of initial conditions used in phase-space
to compute them. Knowledge of basin volume evolution in
parameter space of a prototypical model map opens now the
possibility of investigating aspects of the onset of synchro-
nization and coherence in complex networks containing them
as individual units and of answering a number of open ques-
tions f26g.
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FIG. 4. The standard deviation of Gaussian fits to basin volume
as a function of basin periodicity. See text. The rightmost point
represents a rough estimate at the end of the 132n bifurcation
cascade.
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