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Globally coupled multiattractor maps:
Mean field dynamics controlled by the number of elements
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We report an investigation of a system ofN globally coupled maps able to support multiattractors. For these
systems the mean field dynamics is controlled by the number of elements in the initial partition of each basin
of attraction. This behavior is in strong contrast with coupled systems of maps with a single attractor, where the
mean field dynamics is usually simple for weak couplings. In spite of the increased local complexity, the global
dynamics can be reduced to a simple two-dimensional map up to the first bifurcation point of the coexisting
attractors.@S1063-651X~99!50601-6#
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Coupled map lattices~CML! provide perhaps the mos
popular type of complex dynamical systems for studying
generic properties and basic mechanisms of spatiotemp
chaos@1#. There are two extreme classes of CML’s whi
differ fundamentally in their behavior. The first type is co
stituted by systems with short-range~typically nearest-
neighbor! interaction, and low-dimensional~1D, 2D! lattice
architecture@1,2#. Its main feature is a fast decay of spat
correlations that leads to the convergence of statistical a
ages forN→`. The second class is constituted by syste
with global interactions, where the basic model introduc
and studied extensively by Kaneko@2–4# is the globally
coupled map lattice~GCML!:

xi~n11!5~12e! f @xi~n!#1
e

N (
j 51

N

f @xi~n!#. ~1!

Here n is a discrete time time variable,f (x) is a map pre-
scribing the local dynamics, andi 51, . . .N is the index
identifying the elements. An analogy with globally couple
oscillator systems is pertinent@5#. In globally coupled sys-
tems, the absence of relaxation towards statistical equ
rium is one of the principal differences from the case of lo
coupling. That such a behavior is a consequence of lo
range coupling was convincingly proven by Chate´ and
Manneville @6#: They found that in locally coupled high
dimensional lattices, where the coordination number can
very large, spatiotemporal chaos takes the form of nontri
collective behavior without stationary probability distrib
tions.

By far, the most extensively studied ‘‘standard model’’
GCML is based on the logistic mapf (x)512ax2 ~x
P@21,1#, aP@0,2#! as the local element in Eq.~1!. The
rich dynamics of this system is relatively well-known fro
numerical simulations@2,3,7#, even some rigorous analytica
results have been recently obtained for the weak coup
limit @8#. A few extensions of the standard model by intr
ducing heterogeneity@9# or noise @10# also attracted re-
cent interest as realistic models of complex phenomen
physics@1,5,7#. Here we introduce an extension that reveal
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striking feature: The partition of initial configuration
$xi(n50)% can play the role of control parameters in dete
mining the global dynamics.

Similar to GCMLs, other complex systems can also p
sess a large number of coexisting attractors, like the m
chanical rotor model studied in detail by Feudelet al. @11#.
The common property of such systems is the so-called m
tistability, i.e., the existence of several different long te
asymptotic states. Examples can be given from many fie
such as neuroscience@12#, chemistry @13#, optics @14#, or
condensed matter physics@15#. Our GCML proposed here
can be considered as a prototype of multistable systems,
its simplicity can help a lot in the understanding of multia
tractor dynamics.

The local map for Eq.~1! in our investigations is the
restricted quartic map which is simply the second iterate
the logistic map:

f ~x!512a~12ax2!2. ~2!

The generic quartic mapf (x)512a(12bx2)2 has a single
variable but two control parameters, and has a very comp
stability domain structure, investigated in detail by one of
@16#. The restricted form of Eq.~2! preserves the basic bifur
cation structure of the logistic map in parameter space, h
ever, in sharp contrast with the logistic case, it displaystwo
coexistingstable attractors~Fig. 1!. The boundaries of the
basins of attraction are given by the unstable fixed po
6(A114a21)/2a. Internal crisis@17# occurs when the un-
stable fixed points coincide with the attractor, resulting in t
‘‘explosion’’ of the chaotic amplitude~see Fig. 1, atabm
'1.543 65. . . , which is also the band merging point for th
logistic map!. For parametersa.abm the two attractors seem
to be identical, i.e., numerically indistinguishable, but ma
ematical continuity ensures that individual trajectories sta
ing from different initial values cannot overlap.

The separation of the basins of attraction obviously s
gests that the mean field dynamics should depend strongl
the initial configurations. Indeed, the GCML with quart
maps can be forced to follow for a while either the top or t
bottom attractor by a suitable preparation of the initial v
R28 ©1999 The American Physical Society
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ues; see Fig. 2. Here the mean fieldh(n)
5(1/N)( i 51

N f @xi(n)# and the average maximum Lyapuno
exponentL5(1/N)( i 51

N l i are plotted for coupled logistic
and quartic maps too@18–20#. We could identify approxi-
mately the same dynamical ranges for the coupled qua
maps ~coherent phase, ordered phase, partially ordered
glassy phase, and standard chaotic phase!, as described in
details for logistic maps@2,7,10#. In Fig. 2, arrows indicate
where the first clustering instabilities arise, next we anal
this question in more detail.

Clustering is one of the most common phenomena
GCML @7,21–23#. The critical stability condition of a coher
ent state, where all of the elements are moving fully synch
nized, is explicitly given@21# asl1 ln(12e),0, wherel is
the Lyapunov exponent of the elementary map at the gi
parametera. Note that this condition is generally valid fo
any coherent state, whatever its motion, periodic or chao
If the stability condition is not fulfilled, the system splits int
a given number of clusters, where in each cluster the s
variable of the members is identical. The first clustering
stability in coupled logistic maps is fixed by the parametera
and e @Fig. 2~a!#, but not the size of the clusters. Differe
initial configurations can result in different number of el
ments in the two clusters@23#. In a two-cluster state, the
global dynamics can be reduced to a simple two-dimensio
map @21#; however, reduction is possible onlyafter the sys-
tem has fallen onto two clusters.

The situation is rather different with quartic maps, sin
they support multiattractor local dynamics. Map~2! has two
coexisting attractors with well defined basins, a given init
configuration determines the first clustering instability; s

FIG. 1. Bifurcation diagram for the single quartic map Eq.~2!.
At each of thea parameters, 300 values are plotted after discard
the first 50 000 iterations. White and gray regions show the ba
of attraction for ~a! the ‘‘top,’’ and ~b! the ‘‘bottom’’ attractors,
respectively.
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Fig. 3. Furthermore, the following reduced two-dimension
map@21# gives a very good approximation for the collectiv
dynamics:

Xn11
↑ 5~12e↓! f ~Xn

↑!1e↓ f ~Xn
↓!,

~3!
Xn11
↓ 5~12e↑! f ~Xn

↓!1e↑ f ~Xn
↑!.

HereXn
↑ andXn

↓ represent the clusters on the top~↑! and the
bottom ~↓! attractors at time-stepn, and e↑5ke and e↓
5(12k)e are the effective coupling constants for a par
tioning k5K/N. The mean field is then simplyh5kXn

↑

1(12k)Xn
↓ . In Fig. 4 we show how the first clustering pa

rameterac depends on the partitioningk for several coupling
constantse and system sizesN. There is a critical ratiokc ,
which separates the common attractor fora,ac : At k
,kc , the coherent state settles on the bottom attractor, w
at k.kc on the top attractor. Note that the weight of the tw
attractors is rather different. The critical ratiokc5kc(e)
'0.5720.62 and the higher slopes atk,kc show that the
bottom attractor represents a ‘‘deeper minimum,’’ by usi

g
s

FIG. 2. Average Lyapunov exponentL ~s! and the mean fieldh
~3! as a function of the dynamical parametera, for e50.1 andN
51600. Five hundred values ofh are plotted after discarding
50 000 iterations. The average value and the standard deviatio
L were determined in 50 000 steps after discarding 50 000 in
iterations. Arrows indicate the first clustering instability.~a! Logis-
tic maps, the initial values were uniformly distributed random nu
bers in the range of@0,1#; ~b! quartic maps, initial random value
are in @0.5,1#; ~c! quartic maps, random initial values in@0,1#.
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an analogy from two-state systems. Since the mean field
tractor from a randomized initial configuration is always d
ferent from that of the elementary map, the results of
direct simulations show a slight systematic deviation fro
the reduced map representation@Eq. ~3!#, see the nonlinea
curves atk,kc for the coupled maps~symbols in Fig. 4!. For
the same reason the functional form ofac(k;e) is not uni-
versal, although a partial data collapse can be obtained
k.kc by the transformationac→(ac2a2)/e, where a2
50.75 is the first bifurcation point for the logistic map~see
Fig. 4, inset!.

The two-dimensional reduced map approximation bre
down at the second clustering instability, which occurs aa

FIG. 3. Mean field bifurcation diagram for coupled quartic ma
in the periodic range. Different initial configurations were prepa
by dividing the sites into two clusters:K sites~see the labels! out of
N51600 had random starting values in the basin of the top att
tor, N2K in the basin of the bottom attractor~see Fig. 1!. After
discarding 50 000 iterations, 100 subsequent values ofh are plotted
for eacha.

FIG. 4. First clustering parameterac as a function of partition
k5K/N, whereK elements from the total ofN have initial value in
the basin of the top attractor. Symbols denote lattice simulati
with e50.05, N5500 ~n!; e50.07, N5500 ~* !; e50.09, N
5800 ~1!; e50.1, N5500 ~s!; e50.1, N51500 ~l!; e50.11,
N5500 ~h!. Solid lines are obtained by the reduced map~3!. The
inset shows a partial data collapse; see the text.
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.1.3 ~cf. Fig. 3!. A higher order cluster expansion, e.g.,
similar one which was successfully developed for local co
pling in Ref. @24#, could provide a proper description fo
small number of clusters, but in the chaotic range at we
couplings the number of clusters can be comparable with
number of elements itself. In our system, however, there
rather wide parameter range of local chaos with simple g
bal dynamics. Next we analyze this case.

It is known from studies with coupled logistic maps th
different partitionings even in a two-cluster state can resul
different dynamics from periodic to chaotic, considering t
motion of thesingle elementsin the clusters@7,21–23#. The
mean fielddynamics, however, remains usually simple in t
sense that the amplitude distribution of the mean field fl
tuations is Gaussian@4#. The width of the Gaussian is de
creasing withN up to a given critical sizeNc , where the
emergence of coherences leads to the apparent violatio
the law of large numbers@25#, discussed in detail in the
literature and explained by Pikovsky and Kurths@26#.

The success of the reduced two-dimensional map desc
tion seems to suggest that the system of globally coup
quartic maps has a simpler dynamics than a GCML w
logistic maps, at least in the parameter range where the
sins of attraction are well separated. However, as we h
shown already, the two attractors of the quartic map do
have equal weight in the formation of the global dynami
This asymmetry holds also in parameter ranges where
internal dynamics of the top and the bottom is more com

FIG. 5. Bifurcation diagram for the mean fieldh and average
Lyapunov exponentL as a function of partitionk5K/N, whereK
elements from the total ofN55000 have random initial value
P@0.6,0.8#; the rest isP@0,0.5#. For each case, 50 000 initial it
erations were discarded and the next 200 values forh are plotted.
The inset shows a zoomed region.L is obtained as in Fig. 2. The
other parameters area51.58 ande50.25.
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cated than a simple fixed point. Thus we expect that
collective attractors realized at the top and at the bottom
be different depending on the global couplingand the num-
ber of sitesN. Here we illustrate that this is really the cas

Figure 5 shows a representative bifurcation diagram
the mean-fielddynamics as a function of partitioning of th
initial configurations. We emphasize that the separation
the basins of attraction for thecollective attractorsis very
good, yet, riddling@19# begins at arounda'1.74 for the
given couplinge50.25@20#. Accordingly, theglobal dynam-
ics can be chaotic, pure periodic, and any mixture
them, and the only apparent control parameter is the n
ber of elements in the different basins of attractio
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In summary, we have shown that the global dynamics
our simple coupled multiattractor system can be effectiv
controlled by the partitioning of initial configurations in th
different basins of attraction. We emphasize that this pa
tioning does not require a very precise preparation of ini
values, in this sense the dynamics is not sensitive for sm
amplitude noise, like other multistable systems@11#.
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