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Maximum Lyapunov exponents and return maps are derived from a numerical integration of equations describing a laser with
intracavity saturable absorber. Different sets of parameters are used in the models. It is shown that deterministic chaos with a
small positive Lyapunov exponent is associated to multibranched return time return maps while noisy evolution leads to maps

with a lattice structure.

1. Introduction

The laser with intracavity saturable absorber
(LSA) is a high sensitivity quantum optical system
useful for laser spectroscopy investigations, but pre-
senting also a complex non-linear dynamical behav-
iour. The chaotic behaviour of the single-mode op-
eration of LSA has been investigated in different
experimental configurations based on an infrared
CO,, laser containing a molecular absorber [1-4],
and analysed numerically in different models [5-7]
and more recently through a comparison with one-
dimensional maps [8] and through a topological ap-
proach [9]. On the basis of those different methods,
the LSA time dependence has been classified as cha-
otic, and associated with the presence of a homo-
clinic orbit to a saddle cycle. On the contrary, the
straight approach of verifying the presence of chaos
through a calculation of Lyapunov exponents has
been applied only in a few cases mainly for models
not corresponding specifically to the experimental
observations [5,10]. It is the main purpose of this
paper to present Lyapunov exponents calculated for
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a model that has been previously applied to interpret
experimental observations. A key feature of the cha-
otic behaviour presented by the infrared CO, LSA is
the vibrational structure of the CO, amplifier me-
dium. Even though most LSA models take into ac-
count the vibrational structure, they differ in the de-
scription of the rotational structure of the absorber
medium. In this paper the maximum Lyapunov ex-
ponent is derived for several sets of control param-
eters on the basis of a LSA model [6] specifically
tested through a comparison with experiments [7].

The return map approach has been used as a very
convenient tool for the classification of LSA regimes
[8]. In this paper return maps are derived from time-
dependent numerical solutions of the LSA equa-
tions, for the same set of parameters used in the de-
termination of the Lyapunov exponents. The theo-
retical return maps allow us to make a comparison
with the experimental ones reported in ref. [8], and
to conclude that also the experimentally observed
time dependences are associated to positive
Lyapunov exponents, i.e. they are chaotic. Finally
the comparison with the topological approach, pre-
sented in ref. [9], allows us to discuss some char-
acteristic features of the return maps associated to a
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homoclinic orbit to a saddle cycle via phase-space
Poincaré sections. As an important result of the pres-
ent work, we confirm that the LSA experimental
chaotic sequences for which the topological analysis
has been applied, correspond to a case of a small pos-
itive Lyapunov exponent. If a system has an unstable
orbit of low period, according to the classification
introduced in ref. [9], with a small positive
Lyapunov exponent, an evolution near the unstable
periodic orbit, with close return to its previous evo-
lution, takes place. The organisation of such orbits
and the identification of the topological invariants
allow one to determine the presence of a strange at-
tractor [11].

2. LSA model and Lyapunov exponents

For a two-level laser with adiabatic elimination of
the polarization, the relevant variables are the elec-
tric field E, or intensity Joc E?, and the population
difference D between the lower and the upper level.
For infrared CO, lasers operating on excited vibra-
tional transitions, a third variable is required to de-
scribe the population in the other states [2], and
through a proper transformation the equation for the
third variable S assumes a very simple form [6]. For
the absorber medium the population difference D
between the resonant levels is the only required vari-
able. Thus the LSA is modelled by the following set
of equations,

O e l(—AD+AD+ DE+L(), (1a)
%:y(l——D—DEZ)—Cn(D—S)’ (1b)
& s-D). (1)
((ii—l?=—;7(D_—l+aD-E2), (1d)

where the electric field £ has been normalised to the
amplifier saturation value and the time ¢ is normal-
ised to the cavity decay rate k, A and A4 are respec-
tively the small signal amplification and absorption
constants, also normalised to the cavity decay rate,
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and D and D are normalised to 1. The vibrational
relaxation rates of amplifier and absorber, y and 7,
are also normalised to the cavity decay rate. Finally
the parameter a is the ratio between the saturation
values of the amplifier and the absorber. In eq. (la)
the term { is a Gaussian white noise, defined by the
relation ({(£){(t')>=2Q0(t—t") representing the
spontaneous emission source required to start laser
action.

If an adiabatic elimination of the D variable is per-
formed, the main features of the LSA chaotic be-
haviour remain in the reduced three-equation model
[6]. In the present analysis use will be made mainly
of the full model, because for parameter values rel-
evant to the experimental investigation the adiabatic
elimination of D cannot always be applied. For the
first two sets of parameters of table 1, we used di-
rectly the equation for the evolution of the laser in-
tensity instead of eq. (la) for the electric field am-
plitude, without the noise term, which turns out to
be not relevant for these parameter values.

We have investigated the LSA behaviour for the
three sets of parameters listed in table 1. The first set
of parameters is taken from the theoretical analysis
of ref. [6], and corresponds to a non-periodic irreg-
ular time dependence of the laser intensity, which
was assigned as chaotic in that analysis. Figure la
shows the temporal evolution of the laser intensity
1, as derived from numerical integration of egs. (1)
using a standard fourth-order Runge-Kutta integra-
tor with constant step #=0.025. The time depen-

Table |

Parameter values and initial conditions for the three numerical
simulations. The parameter values explore different chaotic
scenarios so as to reproduce the experimental observations.

Parameter Set I Set 11 Set 111
A 27.0 44.0 5.7
A 0.78 1.0 1.1

a 0.3 0.25948 10.0

y 0.0016 0.0008 0.0016
) 0.1 0.099 0.1
7 0.1 0.0998 0.1

7 1.2 0.0769 -
E(0) 42172 42172 42
D(0) 1/43 1/43 1/43
S(0) 1/43 1/43 1/43
D(0) 1/9.5 1/9.5 -
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Fig. 1. Time dependence of the LSA laser intensity /, measured
in units of the amplifier saturation intensity: (a) for the param-
eter set 1 of table 1, (b) for the parameter set II, (c) for the pa-
rameter set III. Time is measured in units of the cavity decay
time, with 7=0 the starting time for integration.

dence is classified as hesitation between P(®) and PtV
pulses [4], i.e. an unpredictable sequence of pulses
with one large peak and pulses with one large peak
followed by a small one.

By numerically integrating eqs. (la)-(1d) for a
time up to 8.0 10% a very large set of data has been
derived. The maximum Lyapunov exponent A, has
been computed as described in ref. [12]. However
the norm was recalculated at each step of the inte-
gration, following the requirements of Shimada and
Nagashima [13]. The result for the 4., calculation
is reported in fig. 2 as a function of the data set con-
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tained in an integration time t;,,. It appears from this
figure that the value of A, is positive and clearly
stabilises to a value of 0.006, in units of k, when the
largest data set is used.

The second set of parameters derives from the
analysis presented in ref. [4] for the interpretation
of experimental results. The time dependence for this
parameter set, shown in fig. 1b, is classified as hes-
itation between P4 and P> regimes. Thus the sec-
ond parameter set corresponds to nearly the central
region, assigned as chaotic, in the phase diagram of
ref. [4]. Also for this parameter set the maximum
Lyapunov exponent, determined as described above,
turns out to be positive and converges to 0.005.

The third set of parameters of table 1, here in-
cluded mainly to have a complete comparison be-
tween Lyapunov exponents and return time return
maps, has been also investigated in ref. [6] for evo-
lution in the (E, D, S) phase space and location in
the phase diagram. In this case an adiabatic elimi-
nation of the D variable was applied and a three-
equation set was numerically integrated. The time
evolution of the laser intensity, reported in fig. lc,
appears not very different from those obtained for
other sets of laser parameters. The main difference
1s that the presence of spontaneous emission noise in
the laser equation (1) is essential to produce an un-
predictable evolution of the laser intensity. In ab-
sence of spontaneous emission the time evolution is
periodic, while for increasing values of the noise in-
tensity, it becomes irregular; in particular, for
Q=1.75x 10" the laser intensity time evolution ap-
pears as a mixing of P® .and P pulses. This be-
haviour of the numerical solutions leads to a com-
parison with similar experimental regimes and is
important for the identification of the presence or
not of deterministic chaos. In effect the question of
evolution associated either to homoclinic chaos or to
noise presence has been crucial for instance in the
characterisation of the Belusov-Zhabotinskii reac-
tion [ 14]. Our derivation of the maximum Lyapunov
exponent, A= —2.16X 10~ for the evolution with-
out noise and A= —1.87x 10~3 for the evolution in
the presence of the noise level specified above, con-
firms the interpretation in terms of a deterministic
non-chaotic dynamics whose irregularity is governed
by noise [6]. Moreover, the occurrence of a negative
Lyapunov exponent and the comparison of corre-
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Fig. 2. Maximum LSA Lyapunov exponent versus integration time, with 0.025 integration step, for parameter set I of table 1.

sponding return time return maps, will prove that
experimental and theoretical return maps with a lat-
tice structure are not associated to deterministic
chaos.

3. Return maps

The derivation of one-dimensional return maps
from experimental time series data and their com-
parison with theoretical ones, are important steps to-
wards the characterisation of a system’s dynamics
[8].

We have applied the derivation of return maps also
to the theoretical time series for the laser intensity.
One-dimensional intensity return maps (I, I, ;) may
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be derived from an embedding space built up using
the usual time delay technique. Return time return
maps (RTRMs) are much simpler to derive from
time series data, because they do not require the re-
construction of the embedding space. The RTRM is
related to an intensity return map through a function
associating to each point on the Poincaré section of
the embedding space a corresponding return time
[8]. If that function is monotone, hence invertible,
a one to one correspondence between intensity and
return time maps exists. In order to derive a RTRM
from the numerical data for the laser intensity, a sec-
tion with /=const was introduced into the time se-
ries of the laser intensity. All the time intervals ¢; be-
tween successive points with equal laser intensity /
and same sign of dI/d¢ were determined. The (¢;,
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t;4+1) return map of fig. 3a reports each time interval

versus the previous one for the first data set of table
1, using a section plane /=const that intersects all

4 January 1993
the peaks in the time dependent laser intensity.

The map of fig. 3a presents one branch with pos-
itive slope and two branches with negative slope con-
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Fig. 3. (a) The complete return time return map with a /=50 section on the time series, as derived from the parameter set I. (b) Return
time return map as derived from the negative slope parts of the complete map in (a).
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nected at their minimum and lying one above the
other. The positive slope branch corresponds to the
small peaks while the two negative slope branches
are originated by the large peaks in the time depen-
dent laser intensity of fig. 3a. Those large peaks come
from the re-injection mechanism; there are two neg-
ative slope branches, one above the other, because
the function which associates points on the Poincaré
section with return times is multivalued, as dis-
cussed in ref. [8]. We have coded the small peaks on
the positive slope branch with x and the large peaks
on the negative slope branch with y. We point out
that within each branch there is no spreading of the
points in the transverse direction so that the motion
of the system can really be described by a 1-D map.

For comparison, the experimental LSA data of ref.
[8] give rise to 1-D return maps with only two
branches, one for the small peaks and one for the large
ones, which correspond, respectively, to an orien-
tation reversing and an orientation preserving man-
ifold on the LSA Smale horseshoe induced template
[9]. Moreover, the LSA experimental maps show
that, in most cases, the application leading from the
Poincaré section to the RTRM, is single valued. In
the case of fig. 3a instead, the presence of the two
branches means that part of the large peaks lie on an
orientation preserving manifold and that the in-
duced template could be larger than those derived in
ref. [9]. A more detailed study of this problem is now
in progress.

A return map (t¥, t},,) for return times, derived
from the full one of fig. 3a considering orbits leaving
and returning only on the negative slope branches,
is reported in fig. 3b. The return map of fig. 3b may
equivalently be obtained if the /=const section cuts
only those peaks with larger laser intensity.

Maps as in fig. 3 have been observed in the LSA
experiments and also derived theoretically assuming
that the LSA evolution is originated by stable and
unstable manifolds to a limit cycle, while approach-
ing a quadratic tangency [8]. The maps of fig. 3 have
been derived from the LSA equations for a set of pa-
rameters corresponding to -a positive Lyapunov ex-
ponent. Thus the present analysis demonstrates that
the experimentally observed LSA signals with mul-
tibranched maps as in fig. 3 correspond to a weakly
diverging chaotic evolution.

When the RTRM analysis is applied to the second
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set of parameters, i.e. the time dependent laser in-
tensity of fig. 1b, the maps of figs. 4a and 4b are ob-
tained. Figure 4a reports the full RTRM, while fig.
4b reports the restricted return time maps associated
to the negative slope parts of fig. 4a. The map of fig.
4a presents two branches with positive slope and two
with negative slope. Each branch is very well re-
solved, with no spreading of the points in the trans-
verse direction. The whole map suggests a complex
folding of the unstable manifold so it cannot be com-
pared in a simple way with the usual theoretical 1-
D maps studied in ref. [8]. Maps as in fig. 4b have
also been observed in the LSA experiment, however
their analysis in terms of quadratic tangency was not
performed. This numerical simulation confirms that
also those complicated experimental multibranched
maps are expressions of a chaotic evolution, even if
they are associated with orbits of more complex
symbolic name.

For the third set of table 1, the RTRM fora /=10
Poincaré section is shown in fig. 5. It must be com-
pared to the maps of figs. 3b and 4b because it is
equivalent to a map restricted to the negative slope
part. In effect, a complete RTRM could not be per-
formed in this case due to the presence of very small
oscillations of the intensity that could not be re-
solved. It presents a characteristic lattice-like struc-
ture. The same lattice-like structure has been ob-
served in all the maps relative to LSA experiments
with an SF, gas absorber and in those relative to some
experiments with an OsQO, absorber [15]. The pres-
ent analysis, with the determination of a negative
Lyapunov exponent for the corresponding time evo-
lution, confirms the identification of the experimen-
tal observations with a dynamics of the system gov-
erned by noise.

4. Conclusions

The calculation of the maximum Lyapunov ex-
ponent and return maps for the LSA intensity from
a theoretical time series has allowed a comparison
with experimental results and an identification of
experimental observations as chaotic or noise con-
trolled. The positive Lyapunov exponent turns out
to be very small, around (5-6) X 10~2 in units of the
cavity decay rate, corresponding to a weakly diverg-
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Fig. 4. (a) And (b) as in fig. 3 for the parameter set II using a /=50 section on the time series.

ing chaotic dynamics. It is interesting to notice that
similar very low values of the positive Lyapunov ex-
ponent have been derived also in the theoretical

tY(j)
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analysis of an LSA model contained in ref. [10].
The two main objectives of this work are (i) to
confirm that the LSA model leads to return maps
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Fig. 5. Return time return map, as in figs. 3b and 4b, obtained for the parameter set Il using a /=10 section on the time series.

analogous to those observed in the experiment, and
(i1) to show that the multibranched and lattice-like
return maps correspond to deterministic chaos and
noise driven evolution, respectively. Both objectives
have been realized. However, for what concerns the
second one, it could have been suggested to deter-
mine the Lyapunov exponent directly from experi-
mental data in order to comment about chaoticity.
In effect, new approaches have been recently devel-
oped to derive the Lyapunov exponent from short
time series data [16]. This direct approach will be
also performed, however it should be remarked that,
by deriving this maximal exponent from the model,
we obtained the result that LSA chaos is character-
ized by a very small positive Lyapunov exponent,
differing from zero only by 0.5% of the characteristic
rate of the system. The determination of such a small
exponent from experimental data using the ap-
proach quoted above should be checked carefully.
The resulting Lyapunov exponents of the present
analysis are important also for similar experimental
observations, for instance those on a plasma dis-
charge of ref. [17]. In conclusion, as RTRMs are
easily derived from experimental data, maps con-
taining approximately 200-300 points and present-
ing a characteristic multibranched or lattice-like
structure allow a direct identification of either de-
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terministic chaos with small positive Lyapunov ex-
ponent or noise controlled evolution.
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