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We present an alternative procedure to calculate Klein’s g integral. The procedure is free from singularities and allows one to
use any standard integrator in the computation of the Rydberg-Klein turning points. Further, we discuss the implementation of

the present procedure in pocket calculators.

Accurate interatomic potential energy curves are
essential ingredients to model a variety of processes
such as those involving atomic and ionic collision
phenomena, or in the calculation of vibrational
wavefunctions needed to generate reliable band-
strength parameters and Franck-Condon-type over-
lap integrals. In the adiabatic approximation [1] a
diatomic system is completely determined by the
internuclear potential curves of its several electronic
states. Therefore, the determination of these poten-
tials is amongst the most important problems of the-
oretical specroscopy.

Nowadays, the favorite method of generating
potential energy curves for diatomic molecules is the
semiclassical Rydberg-Klein—-Rees (RKR) method
[2-4]. In this method one constructs potential curves
from the standard expressions for the vibrational and
rotational energy E=FE(v, J), where v and J are the
quantum numbers associated with vibration and
rotation, respectively. Basically, the great advantage
of the method is that the resulting curves depend
directly on the experimentally determined energy
levels and not on derived constants. The method does
not depend either on the dissociation energy or on
any assumption about the form of the curve. The
RKR method is based on the semiclassical WKB
approximation and, in spite of this, produces
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remarkably accurate potential curves, particularly for
ground states [5]. An example of this is the com-
parison of the accurate ab initio and the RKR poten-
tial curves for the lightest molecule H, [6]. Quite
often, energies obtained by numerically solving the
Schrodinger equation with RKR potentials agree with
the experimental values on which the potentials are
based [7]. In more complicated cases, when dis-
crepancies between measured and calculated values
show up, it is possible to use iterative procedures for
the calculation of corrections [8].

The basic ingredient of the RKR method is the
energy E(I, x) of vibration and rotation, given as a
function of the classical action variable [ and of a
certain quantity x, equal to the square of the angular
momentum divided by twice the reduced mass u.
From this, for every vibrational energy U, the method
generates a pair of turning points, derived from an
auxiliary function S(U, k). Using classical mechan-
ics Klein [3] showed that

S(UK)=(r2n) " [ (U-E@ 0124, (1)
0

where I' is the value of I for which the integrand
vanishes. Quantization of vibrational motion and of
the angular momentum are taken into account by
replacing I and x by their quantum counterparts,
namely
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I=(v+1)h, (2a)
k=J(J+1)h2/8n%u, (2b)

where 4 is Planck’s constant. As shown by Klein, the
minimum (r_) and maximum (r;) interbarionic
separation for a molecule vibrating with energy U are

ro =(f2+f1g)'"? 1f, (3)
where

N as
f=igs =g (@)
Rotationless potential curves require

as as
f_aU IR i . (5)

We shall now briefly consider the practical pro-
cedures available for constructing (rotationless)
potential curves. To simplify the notation we write
the standard expressions for the vibrational energy
G(v) and the rotational constant B(v) in terms of
experimentally obtained spectroscopic constants g;
and b, defined by

m

Gw)=Y &lv+}), (6)

B)= 3, bv+]) . (7

Instead of Klein’s U, given vibrational level v will be
now characterized by the more frequently used sym-
bol E (=G(v)).

To our best knowledge, all presently available pro-
cedures to obtain fand g involve evaluation of the
improper integrals

f=k | E-G(01"" dx, (®)
1 v

s=1 | BOIE-GE01-7 ax, 9

where

k=(h/8r2cu)'?, (10)

¢ being the speed of light. The above integrals are
improper because they are clearly singular at the
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upper limit of integration. The lower limit vy, is the
value of v corresponding to the potential minimum.
As is trivial to see from egs. (1) and (2a),
Vmin= — 1/2. However, it was later found [9, 10] that
an improvement of the potential curve could be
obtained by taking [11,12]

Umin=—13—Y00/&1 » (11)
where
Yoo =4(g2+b1) — 7581 b2/b,

+ (g1 b,)% /b3 . (12)

When using this v,;, the energy level is given by
E=G(v)+ 7Y, instead of G(v).

As discussed in a plethora of papers, the crucial
point in calculating RKR potential curves has been
the evaluation of the improper integrals fand g. The
reason for this is the aforementioned singularity. To
overcome this problem a variety of methods has been
developed (for specific references see ref. [13]; more
recent works are quoted by Kaminsky [14]). In
essence, these methods are based on effectively
removing the singularities from the integrands. In this
task the quadrature method of Gauss proved very
effective because it does not require evaluation of
the integrand at the limits of integration. In fact,
nowadays two widely used programs to generate RKR
potential curves are based on gaussian quadrature.
One of them is the program of Zare [15] which uses
the Gauss—Legendre quadrature. The other widely
used program is that of Tellinghuisen [12], who
found w(x)=(1—x)~"2 to be a better weight func-
tion than w(x) =1 used by Zare. Both programs are
based on suitable particular cases of the general
quadrature known as Gauss-Mehler quadrature
[12,16].

While all practical procedures available today to
obtain f'and g are based on evaluating singular inte-
grals, a case can be made that the original formu-
lation of Klein involves only one integral, given by
eq. (1), which is not at all singular. The partial dif-
ferentiation of, say, a function P(E) with respect to
a parameter E can be approximated by

9P _P(E+¢)—P(E)

0E € ’ (13)

where € is a small number. The approximation will
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be quite a good one if P(E) is sensitive to slight vari-
ations of E. Anyone who tries to use Klein's eqs. (4)
or (5) in conjunction with eq. (13) to get fand g
soon learns that it generates very accurate f but very
poor g values. This might perhaps explain the gen-
eral preference for first performing analytically the
parametric derivates, even at the price of having to
deal with singular integrals.

The purpose of this letter is to point out that by
introducing another non-singular auxiliary function
(similar to S in eq. (1)) it is possible to calculate g
from a different parametric derivative than that
originally proposed by Klein. In contrast to the for-
mula of Klein, our equation produces accurate g val-
ues and can be used as an alternative and efficient
method to generate accurate potential curves. The
biggest advantage of working with parametric deriv-
atives is that one deals with non-singular integrals,
being therefore fiee to use any quadrature method in
the computation of f and g. Thus, instead of having
to worry about proper weight functions and to com-
pute and/or store weights and abscissae, one can use
any standard integration routine as, e.g. those com-
monly available in computer libraries. In calcula-
tions to be discussed below, we use Simpson’s rule
to achieve results of similar accuracy to those
reported by Tellinghuisen [12]. Another application
to be discussed below is the implementation of the
present method in programmable pocket calculators.

The working equations of the present approach are
based on the identity

B
J a(x)[E-b(x)]~ "2 dx

o

B
Ja(x)[E—b(x)]”zdx. (14)

[24

9

=26

This trivial identity allows one to cast fand g as

f=2kdPISE, g=(2/k)dQIIE, (15)
where
P(E)= [ (E-G(01" ax, (16)

Umin
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0E)= | BOOIE-G(0)1™ dx. an

Umin

These equations are the main results of the present
paper. The basic difficulty with Klein’s formula for
g is that d5/dx is practically constant for small vari-
ations of k. An accurate determination of 35/dx
therefore requires a knowledge of S with an exceed-
ingly large number of significant digits for the dif-
ference in eq. (13) to give reliable results. Being a
function of the energy, our dQ/3F can be evalutated
much more easily.

In table 1 we compare turning points r_ and r
obtained by using eq. (15) with the corresponding
I'min @nd 7., calculated by Tellinghuisen [12] for the
B state of I, and the X state of CO. For I, the num-
bers basically agree to 5 significant digits while for
CO 4 digit accuracy is easily achieved. In calculating
our turning points we used the same spectroscopic
constants as Tellinghuisen. Accordingly, the Yy, cor-
rection was taken into account for CO and omitted
for I,. Although the nuclear masses of both mole-
cules are given by Tellinghuisen with no less than 6
digits, the exact value of k used by him (cf. eq. (10))
remains unknown to us since the actual numerical
constants involved were not given and we do not have
a copy of his program. Following our previous work
[17], we  took h/8nc=16.8575 giving
k=(16.8575/63.45220)'" for I, and
k=(16.8575/6.85621)'2for CO. The integrals P(E)
and Q(E) were evaluated using Simpson’s rule with
a double precision version of the routine SIMP of
Davis and Rabinowitz { 18], setting the error toler-
ance parameter to 10~ "', All calculations were done
in double precision (16 significant digits) on an IBM
4341 at the University of Florianopolis. The num-
bers in table 1 were obtained with e=10-8 in eq.
(13), although roughly the same values are obtained
using =107 or 10~%. These values of € are quite
modest and can be used for calculations in the
majority of computers available today. More accu-
rate results are to be expected for calculations with
smaller values of ¢ on front-line computers like the
CRAY, for instance, or from extrapolations to the
limit e—0. In table 1 it is also important to observe
that for v=85 the numbers given by Tellinghuisen
for I, are values for which the algorithm of integra-
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Comparison of the Rydberg-Klein turning points 7. as obtained from egs. (3), (13) and (15) with 7, and 7, calculated by Telling-
huisen [12]. The upper part of the table (v=0-85) refers to I, while the lower part refers to CO.

v 2f r_ Fenin— 7 2Og ry Fmax— T+
0 0.13018 2.96304 0.00004 0.14204 3.09322 0.00005
5 0.44403 2.84399 0.00004 0.47484 3.28802 0.00005

10 0.63228 2.78859 0.00004 0.66281 3.42087 0.00005

15 0.79460 2.74977 0.00002 0.81529 3.54438 0.00003

20 0.94984 2.72038 0.00004 0.95133 3.67022 0.00005

25 1.10775 2.69777 —0.00001 1.07900 3.80552 0.00001

30 1.27584 2.68023 0.00003 1.20327 3.95607 0.00005

35 1.46141 2.66685 0.00000 1.32742 4.12826 0.00002

40 1.67291 2.65662 0.00003 1.45446 4.32952 0.00006

45 1.92117 2.64897 0.00001 1.58694 4.57014 0.00004

50 2.22135 2.64320 0.00007 1.72760 4.86455 0.00013

55 2.59625 2.63910 0.00003 1.87908 5.23535 0.00013

60 3.08287 2.63627 —0.00000 2.04472 5.71914 0.00009

65 3.74661 2.63447 0.00002 2.22870 6.38108 0.00015

70 4.71851 2.63330 0.00008 2.43730 7.35181 0.00018

75 6.31120 2.63140 0.00001 2.68202 8.94260 0.00027

80 9.52926 2.62294 —0.00003 2.98962 12.15219 0.00042

85 18.77917 2.62208 0.00011 3.34650 21.40126 0.00173
0 0.09546 1.08330 0.00003 0.74758 1.17877 —0.00002
2 0.21566 1.03422 0.00002 1.66836 1.24989 0.00002
4 0.29239 1.00708 0.00005 2.23425 1.29947 0.00007
6 0.35521 0.98722 0.00003 2.68029 1.34243 0.00004
8 0.41065 097127 0.00005 3.05948 1.38192 0.00006

10 0.46149 0.95794 0.00003 3.39401 1.41943 0.00006

12 0.50923 0.94642 0.00004 3.69635 1.45565 0.00009

14 0.55483 0.93628 0.00007 3.97418 1.49111 0.00010

16 0.59886 0.92727 0.00007 4.23185 1.52613 0.00010

18 0.64175 0.91916 0.00008 4.47300 1.56091 0.00011

20 0.68382 0.91176 0.00013 4.70051 1.59558 0.00019

22 0.72539 0.90527 —0.00009 4.91396 1.63066 —0.00003

24 0.76657 0.89916 —0.00013 5.11813 1.66573 —0.00001

26 0.80782 0.89312 0.00023 5.31766 1.70094 0.00023

28 0.84939 0.88824 —0.00014 5.50326 1.73763 —0.00056

tion did not converge. This might perhaps explain
the relatively large differences at this level, speciaily
between 7., and r,. Part of the remaining differ-
ences for all other levels could perhaps be explained
as due to the uncertainty in k as discussed above.
Being free to use any integrator, we calculated the
same RKR turning points using the built-in integra-
tor of an HP-15C programmable pocket calculator.
This calculator has a 10-digit display and, unfortu-
nately, the user’s manual does not mention what type
of integrator it uses. Fixing the display to 6 signifi-
cant digits (thereby fixing a compromise between
accuracy and time limit for the calculations) we have

been able to generate one value of for g every 2.5 to
3.5 minutes of calculation. In this way it was possible
to achieve an accuracy of basically three significant
digits wit almost no more additional effort than
needed to compute G(v) and B(v). We find this quite
remarkable. This means that some future generation
of scientific pocket calculator, operating a little bit
faster and with more significant digits, will make the
computation of RKR curves not much more difficult
than the evaluation of a polynomial and a square
root.
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