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Abstract

By varying real parameters, unstable complex orbits may become stable over wide parameter
ranges. Thus, phase diagrams obtained by analyzing solely the stability of real solutions may be
incomplete.
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The purpose of this paper is to report a remarkable new type of bifurcation: unstable
complex orbits may be stabilized by varying real model parameters. In other words, by
varying real parameters it is possible to stabilize “complex phases” in phase-diagrams.
This surprising fact is shown for the paradigmatic example of a multidimensional dissi-
pative dynamical system, the H'enon map (x; y) �→ (a−x2+by; x). The parameter space
of the map contains a wide domain of real parameters a and b where it is possible to
=nd complex “ghost” solutions which are stable.
This new bifurcation is of importance in the construction of phase diagrams, usually

constructed by sweeping real parameters and studying the set of real solutions, since
domains of complex stable motions might be missing in them. Another interesting
implication is that the plethora of ghost (complex) orbits, so fundamental nowadays in
quite di?erent =elds [1–3], may be subdivided dichotomically into unstable and stable
ghosts, pointing to the necessity of investigating the e?ect of complex stability in all
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physical applications. In atomic physics, for instance, the stabilization of complex ghost
orbits is expected to allow sum re-arrangements in trace formulas [4]. From the exact
analytical results reported here one can show that the H'enon map displays Naimark–
Sacker bifurcations and, consequently, supports quasi-periodic behaviors [5].
The possibility of stabilizing complex orbits seems not to have been considered

before [6,7], perhaps because the algebraic varieties involved are of very high degrees,
exceeding by far those studied by mathematicians [8,9]. The stabilization of complex
orbits was not considered in the classic work of Arnold [10].
As shown recently [11,12], one may always reduce the equations of motion of any

algebraic dynamical systems to a pair of polynomial equations: (i) P(x; �)=0, param-
eterizing simultaneously all orbits of any given period in terms of the sum � of orbital
points, and (ii) S(�) = 0, de=ning the values of � as a function of model parameters.
The degree of S(�) tells the quantity of independent solutions available. In addition,
it is also possible to write the secular equation ruling the stability of the system as a
function of � and of model parameters. Following Ref. [11], the polynomials providing
complete information about all possible period-6 orbits are

P(x; �) = x6 − �x5 + �4(�)x4 − �3(�)x3 + �2(�)x2 − �1(�)x + �0(�) ; (1)

S(�) =
9∑
i=0

	i(a; b)�i ; (2)

where � ≡ x1 + x2 + x3 + x4 + x5 + x6 is the sum of the orbital points. The coeKcients
�i(�) ≡ �i(a; b; �) are the standard symmetric functions of the roots x‘ (orbital points).
The coeKcients �i(�) and 	i(a; b) are given explicitly in the Appendix at the end of
the manuscript. Additionally, orbital stability is ruled by the following quadratic for
the eigenvalues �:

L(�) = �2 −
[
2b3 +

(
N1 + 2N4

D

)
b2 − 2

N5

D
b+ 64�0

]
�+ b6 ; (3)

where N5, not contained in Eqs. (1) and (2), is given in the Appendix. Eqs. (1) and
(3) result from quite long algebraic manipulations which were performed automatically
on a computer using specially devised ad hoc routines.
The degree of Eq. (2) tells that for any set (a; b) of parameters there are nine possible

period-6 orbits, not all necessarily di?erent. The actual orbits are found by substituting
the nine roots of Eq. (2) into Eq. (1). Since for real parameters all 	i(a; b) are real,
(i) there is always at least one real value of �, and (ii) complex values of � must
always appear in conjugate pairs.
To get a feeling about the nature of the foliated surface de=ning � values, Fig. 1

shows the real roots of S(�)= 0 as a function of a, for b=−0:98. The four points Ti
indicate the location of tangent bifurcations. Of special interest is the locus �R de=ned
by that root of Eq. (2) that is always real. Along this locus two di?erent phenomena
occur. First, one =nds the familiar 3 → 6 period-doubling bifurcation, indicated by PD.
The doubled orbit is stable in a small interval between two vertical dashed lines that is
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Fig. 1. Real roots of S(�) = 0 as a function of a, for b = −0:98. Stable complex orbits exist between N1
and N2 on the locus �R, the locus of the real root that is always present. PD refers to the period-doubling,
Ti to tangent bifurcations. The =gures on the right show details hard to see on the left. See text.
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Fig. 2. Stability domains and singularities for period-6 motions. See text.

too small to be discernible in the =gure. Second, along �R we =nd a remarkable new
type of bifurcation arising from the multivalued character of �R between the points
N1 and N2. In this interval there are three real roots �, which de=ne three complex
orbits. The complex orbit de=ned by the “middle branch” interconnecting N1 and N2,
is stable inside a region resembling a “bow-tie” (see Fig. 3 below) precisely where �R
displays a fold (in the interval between N1 and N2 in Fig. 1). This shows that folds
are not always necessarily connected only with tangent bifurcations.
Full lines in Fig. 2 show how the singularities in Fig. 1 evolve when b changes.

Dotted lines, obtained by investigating eigenvalues, delimit stability domains in the
usual way. For reference, Fig. 2 also displays the interval where period-1 orbits (=xed
points) are stable. The new bifurcation being reported here occurs inside the box, shown
magni=ed in Fig. 3. As is known, tangent bifurcations may be located analytically from
the discriminant of Eq. (2) with respect to �.
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Fig. 3. Blow-up of the box in Fig. 2. Stable complex orbits exists in R2.

Fig. 3 shows the stability domain of complex orbits along with a line “1” marking
the border where stable orbits of period-1 are born when a increases. Recall that
physically meaningful solutions exist only in the interval −16 b6 1. The scenario in
the region above the line b=−1 is divided into four domains labeled Ri and displays
the following characteristics. All nine period-6 orbits are complex in R1, despite the
fact that one of them corresponds to a real �. Moving from R1 into R2, one =nds
the complex orbit stabilizing bifurcation, when two additional values of � become real
(see curve �R in Fig. 1) but their corresponding orbits remain complex, one of them
being stable. In R3 there are three orbits associated with real values of �, two orbits
being real, one stable and one unstable. The complex orbit is unstable, being the same
orbit that will give rise to a stable orbit following the 3 → 6 period-doubling, when
a increases. When moving from R3 to R4, the stable real orbit loses its stability. The
intersection of the “1” line with R2, located at (a∗; b∗) � (−0:94832;−0:94764), is
de=ned by algebraic numbers of degree 38, a quite high degree. This intersection has
a dual [11] at b = 1=b∗ � −1:0552 and a � −1:0560. The tip of R2, located roughly
at (a; b) = (−0:95449;−0:93348), is de=ned by algebraic numbers of degree 76.
All in all, the exact expressions reported here, result of long and elaborate algebraic

computations, reveal the existence of a new sort of bifurcation that occurs among
complex trajectories, transforming unstable ghost orbits into stable complex orbits.
Our Eqs. (1)–(3) contain many additional features that will be considered in a future
publication [5].
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Appendix

The coeKcients �i(a; b; �) and 	i(a; b)The coeKcients �i(a; b; �) needed to de=ne
all period-6 orbits are the following:

�4 = [�2 + (1 − b)� − 6a]=2 ;

�3 = [2�3 + 6(1 − b)�2 − 32a� − N1(1 − b)=D]=12 ;

�2 = (1=24){�4 + 6(1 − b)�3 − [28a− 3(1 − b)2]�2 − 6(1 − b)
× [4a− (1 + b2)]� + 36[2a− (1 + b2)] − 2(1 − b)�N1=D+ 3bN2=D} ;

�1 = (1=120){�5 + 10(1 − b)�4 − 5[8a− 3(1 − b)2]�3 − 10(1 − b)
× [10a− 3(1 + b2)]�2 + 12[22a2 − 13a(1 + b2) − 2b(1 − b)2]�
− (1 − b)[5�2 + 5(1 − b)� − 18a]N1=D

+3[5b� − 2(1 − b3)N2=D − 6bN3=D]} ;

�0 = (1=720){�6 + 15(1 − b)�5 − 5[10a− 9(1 − b)2]�4

− 5(1 − b)[16a− 7b2 + 2b− 7]�3

+ 2[272a2 − 9(27b2 − 10b+ 27)a+ 9(5b2 − 8b+ 5)(1 − b)2]�2

+ 24(1 − b)(15a− 25b2 + 26b− 25)a� − 360a2(2a− 3(1 + b2))

− 2[(1 − b)(5�3 + 15(1 − b)�2 − 44a�) + 15(b4 − b3

+ 6b2 − b+ 1)]N1=D − 9[5b�2 − (1 − b)(4b2 − b+ 4)� − 10ba]N2=D

+36b�N3=D − 360b(1 + b2)N4=D − 5(1 − b)2(N1=D)2=2} ;
where the following abbreviations are used:

D= 3�4 − 7(1 − b)�3 − (12a− 11b2 − 5b− 11)�2 + (1 − b)
× (16a− 19b2 − 34b− 19)� − (1 − b)2(4a− 8b2 − 13b− 8) ;

N1 = �6 − 2(1 − b)�5 + 2(2a+ 5b2 − 22b+ 5)�4

− 4(1 − b)(18a+ 5b2 − 20b+ 5)�3 − [32a2 − 8(22b2 − 5b+ 22)a

+3(9b2 + 4b+ 9)(b2 + 4b+ 1)]�2 + 2(1 − b)[64a2 − 4(29b2 + 46b

+29)a+ 51b4 + 132b3 + 258b2 + 132b+ 51]� − 12(1 − b)2

× [8a2 − (13b2 + 28b+ 13)a+ (b2 + b+ 1)(8b2 + 13b+ 8)] ;
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N2 = 3�6 − 4(1 − b)�5 − 12(3a− 4b)�4 + 2(1 − b)(48a+ 5b2

− 26b+ 5)�3 + [96a2 − 24(7b2 + 3b+ 7)a+ 13b4 + 68b3 + 126b2

+ 68b+ 13]�2 − 2(1 − b)[64a2 − 88(1 + b)2a+ 27b4 + 48b3 + 90b2

+ 48b+ 27]� + 4(1 − b)2(8a− 9b2 − 24b− 9)a ;

N3 = �7 − 2(10a− 27b)�5 + 2(1 − b)(20a− 7b2 − 55b− 7)�4 + [64a2

− 16(8b2 + 11b+ 8)a+ (7b2 + 4b+ 7)(9b2 + 10b+ 9)]�3

+ 2(1 − b)[16a2 + 4(29b2 + 53b+ 29)a− (105b4 + 211b3 + 376b2

+ 211b+ 105)]�2 − 4(1 − b)2[48a2 − (25b2 + 42b+ 25)a− (8b2

+ 13b+ 8)(7b2 + 4b+ 7)]� + 24(1 − b)3(4a− 8b2 − 13b− 8)a ;

N4 = �6 − (1 − b)�5 − (14a+ b2 − 17b+ 1)�4 + (1 − b)(34a− 3b2

− 43b− 3)�3 + [40a2 − 2(29b2 − b+ 29)a− 4b4 + 27b3 + 8b2

+ 27b− 4]�2 − (1 − b)[96a2 − 2(69b2 + 110b+ 69)a

+16b4 + 87b3 + 178b2 + 87b+ 16]� + 2(1 − b)2

× [28a2 − 9(6b2 + 11b+ 6)a+ 3(b2 + b+ 1)(8b2 + 13b+ 8)] ;

N5 = �8 + 2(−9a+ 2b2 + 17b+ 2)�6 + 2(b− 1)(−6a+ 9b2 + 29b

+9)�5 + (72a2 − 12(3b2 + 22b+ 3)a+ 186b2 + 82b+ 59b4

+ 82b3 + 59)�4 + 2(b− 1)[8a2 − 12(3b2 + 16b+ 3)a

+(b2 + b+ 1)(111b2 + 116b+ 111)]�3 + 2[ − 32a3 − 24(2b2

− 9b+ 2)a2 + (115b4 − 56b3 − 226b2 − 56b+ 115)a+ 104b6

+ 36b5 + 22b4 + 22b2 + 36b+ 104]�2 + 4(b− 1)[ − 64a3

+ 4(21b2 + 62b+ 21)a2 − (11b4 + 196b3 + 402b2 + 196b+ 11)a

+(b2 + b+ 1)(16b4 + 87b3 + 178b2 + 87b+ 16)]�

+8(b− 1)2[ − 24a3 + 5(11b2 + 20b+ 11)a2 − 9(6b2 + 11b

+6)(b2 + b+ 1)a+ 3(8b2 + 13b+ 8)(b2 + b+ 1)2] :
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The coeKcients 	i=	i(a; b) needed in Eq. (2) to obtain the 9 solutions �‘=�‘(a; b)
are 	9 = 1, 	8 = 1 − b, 	7 = −24a+ 2(b2 + 16b+ 1), and

	6 = 2(1 − b)[4a− (7b2 + 12b+ 7)] ;

	5 = 144a2 − 16(b2 + 25b+ 1)a+ (49b4 + 52b3 + 266b2 + 52b+ 49) ;

	4 =−(1 − b)[112a2 − 16(b2 + 27b+ 1)a

+(175b4 + 388b3 + 518b2 + 388b+ 175)] ;

	3 =−4[64a3 − 8(b+ 5)(5b+ 1)a2 − 2(17b4 − 48b3 − 172b2

− 48b+ 17)a− (7b2 + 2b+ 7)(5b4 + 9b3 − b2 + 9b+ 5)] ;

	2 = 4(1 − b)[64a3 − 8(15b2 + 38b+ 15)a2 + 6(23b4 + 48b3 + 96b2

+ 48b+ 23)a− (7b4 + 33b3 + 55b2 + 33b+ 7)(7b2 + 2b+ 7)] ;

	1 = 8(1 − b)2[32a3 − 2(19b2 + 34b+ 19)a2 − 2(26b4 + 23b3 + 9b2

+ 23b+ 26)a+ (b2 + b+ 1)(7b2 + 2b+ 7)(8b2 + 13b+ 8)] ;

	0 =−16a(1−b)3[16a2 − (37b2 +62b+37)a+3(b2 + b+ 1)(8b2 + 13b+8)] :
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