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We report a systematic investigation of the ability of Chandrasekhar’s basis to produce 
energy eigenvalues for the helium isoelectronic sequence and compare it with the standard 
Hylleraas’ basis. The basis is found to be extremely useful to obtain fast and accurate 
energy approximations for H-. In addition, we also investigate the dependence of energy ei- 
genvalues on the interelectronic u coordinate and find it to be more important for 222. 

In 1929 Hylleraas’*’ introduced the coordinates s,u,t 
and the wave function 

ij,k 

as an an~utz to describe properties of helium. The basic 
reason of introducing these coordinates was their simplic- 
ity in dealing with the explicit electronic correlation u of 
two-electron systems. Essentially, the coordinates reduced 
variational calculations involving Eq. ( 1) above to the 
evaluation of integrals of the generic type 

(2) 

I 

While such calculations produced good results for atoms 
with 222, their success was not so great for Z= 1, the 
negative hydrogen ion. The poor convergence for Z= 1 
induced Chandrasekhar3 to suggest using 

&(s,u,t) =e-“= cosh( :Et) x dij,k S’tJP, (3) 
ij,k 

where E should account for “missing” screening and polar- 
ization. Obviously, for e=O, $c= r+&. In addition to Iu, 
energy calculations with Eq. (3) imply having to deal with 
the family of integrals 

(4) 

Chandrasekhar showed that Eq. (3 ) indeed produces bet- 
ter results for H-. His function could have well been used 
to calculate properties of the whole helium isoelectronic 
series. However, while Hylleraas’ wave function was ap- 
plied in many investigations of properties of two-electron 
systems, Chandrasekhar’s wave function was essentially 
forgotten. A reason for this could be the quite complicate 
nature of I,. The situation did not change with the advent 
of modem computers; the general approach has mainly 
been to use long expansions involving configurations pro- 
ducing simple integrals rather than looking for “better ba- 
sis,” i.e., basis allowing one to obtain the same numerical 
accuracy but using much less configurations. The price to 
be paid for reducing the number of configurations is an 
increase in the complexity of integrals. But, when is it 

convenient to pay the price? Would it be convenient to 
replace Hylleraas’ by Chandrasekhar’s basis in general? 

The purpose of the present note is to present results of 
a systematic investigation of how the inclusion of the 
cosh&t] term in Hylleraas’ ansutz influences variational 
energies obtained for the helium isoelectronic sequence. 
Another objective is to study the relative importance of 
terms involving the ZJ coordinate (“explicit correlations”) 
in variational trial functions. Good u-independent ansiitze 
for two-electron systems are of importance in studies of 
noncentral potentials like, e.g., the quadratic Zeeman ef- 
fect, in the same spirit that allowed the introduction of a 
convenient basis to describe with very high accuracy prop- 
erties of hydrogen atoms in magnetic fields of arbitrary 
strength.4 The “noncentral” nature of the potential, i.e., its 
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TABLE I. Energies (a.u.) obtained by adding the term in the first col- 
umn to the expansion q(s,u,t) =cosh&t) (1 +x,s+x,u+x,?). The 
terms in the first column were ordered according their effectiveness in 
lowering the energy for Z= 1, downwards from best to worst term. The 
numbers in parenthesis in the last two columns indicate the order that is 
obtained for Z=2 and 10. The terms are separated into three groups, 
according to the sum of their exponents. 

Term E(Z= 1) E(Z=2) E(Z= 10) 

u2 
d 
su 
St2 
s’ 
IdI 
su2 
zu 
Id 
22 
su2 
s’ 
t 
du 
U212 

At2 

U4 

SU’ 

-0.527 1514 -2.902963 l(1) 
-0.527 142 5 -2.902 797 6(2) 
-0.527 029 3 -2.902 590 4(3) 

-0.527 175 1 -2.902 629 3(6) 
-0.527 159 3 -2.902 793 9( 1) 
-0.527 061 3 -2.902 744 O(2) 
-0.527 031 4 -2.902 632 4(5) 
-0.527 048 5 -2.902 637 4(4) 
-0.527 026 0 -2.902 705 9(3) 

-0.527 331 7 -2.902 691 a(2) 
-0.527 152 9 -22.902 593 O(8) 
-0.527 152 0 -2.902 743 4( 1) 
-0.527 1212 -2.902 611 2(5) 
-0.527 087 3 -22.902 653 l(3) 
-0.527 048 2 -2.902 606 7(6) 
-0.527 035 9 -2.902 590 O(9) 
-0.527 027 7 -2.902 632 5(4) 
-0.527 025 2 -2.902 605 7(7) 

-93.905 351 7( 1) 
-93.904 652 l(2) 
-93.904 364 6(3) 

-93.904 288 9(5) 
-93.904 579 a(3) 
-93.904 855 9( 1) 
-93.904 556 4(4) 
-93.904 284 O(6) 
-93.904 745 a(2) 

-93.904 333 6(5) 
-93.904 310 3(7) 
-93.904 452 3(2) 
-93.904 289 4(9) 
-93.904 293 6(8) 
-93.904 438 2(4) 
-93.904 330 6(6) 
-93.904 528 O( 1) 
-93.904 442 2(3) 

dependence on the angular coordinates entangles integrals 
needed to evaluate quantities like, e.g., energies. Such en- 
tangling would be avoided if trial functions did not explic- 
itly depended on u. Therefore, it would be of great help to 
find a basis not involving directly the u-coordinate but 
that, in spite of this, could yield good eigenvalues. These 
are our main motivations. 

We start by considering the trial function 

q(S,U,t) =cosh(fCt) (1 +x~s+x~u+x~?), (5) 

which contains the lowest-order terms in s,u, and t. The 
notation and method is the same we used before.’ By di- 
agonalizing and minimizing the 4 X 4 matrix corresponding 
to Eq. (5) we obtained the energies -0.527 025 2, 
-2.902 589 6, and -93.904 283 8 a.u. for Z= 1,2, and 10, 
respectively. The problem now is to determine from the 
multitude of possible terms, which are the most relevant 
ones to be added to the expansion of Eq. (5). To this end 
we follow Chandrasekhar and Herzberg;6 we consider the 
effect of adding further terms, one at a time, in the expan- 
sion. “Good” terms are those which produce the biggest 
individual decrease of the energy. The several terms se- 
lected in this way are then all added to the fixed expansion 
and a new energy is calculated from the new function. The 
Z-dependent ordering of subsequent terms obtained for Z 
= 1, 2, and 10 is shown in Table I. By trial and error we 
conclude a fair compromise for all Z to be 

q(s,u,t) =cosh($et) (1 +x~s+x~u+x~?+x,$+x~u~ 

+x~2u3+x~3s2?+x,4sut2+x~5s4~. (6) 

This function contains the first 12 terms in the first column 
of Table I. For low Z, u terms seem to be less important 
than terms with s,t, and powers of st. Table II shows the 
energies obtained by minimizing the energy functional5 in- 
volving K and UE 1 - 2. Table II also contains “exact” 
energies, i.e., the most accurate energy values available in 
the literature, obtained by Frankowski and Pekeris7 and, 
more recently, by Freund et aL8 Frankowski and Pekeris 
used 246 terms of the generic form 

qQ,u,t) =s”t’u”(s2+t2)i’2(ln s)/ (7) 

while Freund et al. considered 230 terms of the form 

fp(s,u,t) =flt’um(ln s)l (8) 

TABLE II. Energies (a.u.) for Z= 1, 2, and 10 for increasing dimension of the matrix generated with Bq. 
(6). EH and EC refer to the energies as obtained using the wave functions of Hylleraas [I$. ( l)] and 
Chandrasekhar [Bq. (3)], respectively. Exact values are from Refs. 7 and 8. 

Dimension 

Z=l z=2 z= 10 

EH EC -%I EC EH EC 

2 -0.472 656 -0.513 302 -2.847 656 - 2.875 663 -93.847 65 -93.871 76 
3 -0.509 590 - 0.526 097 -2.891 232 -2.901419 -93.895 49 -93.903 29 
4 -0.526 262 -0.527 025 - 2.902 473 - 2.902 589 - 93.903 65 -93.904 28 
5 -0.526 275 -0.527 142 - 2.902 774 - 2.902 797 -93.904 51 -93.904 65 
6 -0.526 464 -0.527 417 - 2.903 329 -2.903 364 - 93.905 75 -93.906 03 
7 -0.526 594 -0.527 433 -2.903 425 - 2.903 429 - 93.906 22 - 93.906 30 
a -0.526 633 -0.527 467 -2.903 441 - 2.903 453 - 93.906 24 -93.906 33 
9 -0.526 807 -0.527 481 - 2.903 502 - 2.903 506 -93.906 41 -93.906 41 

10 -0.526 808 -0.527 492 -2.903 523 -2.903 536 -93.906 52 - 93.906 54 
11 -0.526 875 -0.527 581 -2.903 590 -2.903 616 -93.906 58 - 93.906 59 
12 -0.526 893 -0.527 611 - 2.903 628 - 2.903 639 -93.906 64 - 93.906 65 
13 -0.526 893 -0.527 611 - 2.903 640 -2.903 659 -93.906 70 -93.906 71 
14 - 0.526 906 -0.527 695 - 2.903 684 -2.903 688 -93.906 72 -93.906 73 
15 -0.526 967 -0.527 711 - 2.903 693 -2.903 694 -93.906 73 -93.906 74 
16 -0.526 967 -0.527 712 - 2.903 700 -2.903 701 -93.906 75 -93.906 76 
Exact -0.527 751 - 2.903 724 -93.906 80 
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In the precision used in Table II, the numbers of 
Frankowski and Pekeris and of Freund et al. agree in all 
digits. For H- Frankowski and Pekeris obtain the “extrap- 
olated” value -0.527 75 1 016 38 while Freund et ai. ob- 
tain -0.527 751015 3. 

From Table II, it is easy to see that for Z= 1 Chan- 
drasekhar’s wave function is much more efficient in pro- 
ducing converged energies than the simple ansatz of Hyl- 
leraas. In view of the relative complexity of Ic when 
compared with In, this table also convincingly shows that 
Hylleraas’ wave function is a more convenient basis to be 
used for Z)2. Although Table II presents results for the 
specific sequence of configurations given in Eq. (6), we 
also minimized the energy functional for several other or- 
ders and possible combinations of terms in Table I. Based 
in Table I it is reasonable to expect terms like # or su? to 
be more important than, for example, u3, su2, S% or u?. 
However, when included in the trial function, the last 
terms optimize the convergence in a better fashion than 
when skipping them. Note however the increased conver- 
gence in passing from dimension 13 to 14, i.e., when ex- 
plicitly considering the s? term. This effect is also seen for 
Z=2 and 10. Z= 1 tends to prefer sktz terms while Z=2 
and 10 prefer $+2 and u~+~. u-terms are much more im- 
portant at higher Z than at Z= 1. 

An interesting fact to be observed during the minimi- 
zation of K and I? was the possibility of having ez < 0 for 
Z)2, exactly when the energy functional seems to be less 
sensitive to E. This changes the hyperbolic function in Eq. 
(3) into a simple trigonometric function. Since imaginary 

E are quite unexpected here, a reason for their appearence 
could be a numerical instability coming from handling 
high-dimensional matrices involving as elements several 
powers of the variable (I, i.e., a6,a7 ,..., a12. In any case, if 
indeed real, such instabilities only show up for large Z, 
where we already know Hylleraas basis (i.e., e=O) to be a 
much better choice. 

In conclusion, we find Chandrasekhar’s ansutz to be an 
extremely effective basis set to calculate the energy of H-. 
The significant gain can be easily seen by comparing col- 
umns En and EC in Table II. Although Chandrasekhar’s 
basis can also be used for 222 with no great problem, the 
final results are of the same quality as those obtained by 
using Hylleraas’ basis. In view of the simpler nature of the 
matrices involved when using Hylleraas’ basis, this set is to 
be preferred for 222. This makes Chandrasekhar’s basis a 
promising candidate to be used in investigations of noncen- 
tral potentials like, for example, the quadratic Zeeman ef- 
fect in H-. We hope to report about such calculation soon. 
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