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Synchronization and predictability under rule 52,
a cellular automaton reputedly of class 4
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Abstract

We study the complexity exhibited by the gliders of rule 52, a totalistic cellular automaton reputedly capable of highly intricate behaviors. Such
gliders are responsible for information flow and long-range spatial correlations frequently used to classify complexity. We discover an unexpected
simplicity in all computable gliders, shown to arise from simple juxtaposition between active and inactive synchronization patches linked by
a remarkably small set of communication interfaces. We classify such interfaces and argue rule 52 to be interesting but of limited asymptotic
complexity.
© 2007 Elsevier B.V. All rights reserved.
One of the most challenging and interesting phenomena of
dynamical systems is that connected with the spontaneous gen-
eration of complex structures and patterns in space and time
[1–3]. While the emergence of periodic and chaotic temporal
behaviors has been studied in detail during the last two decades,
the genesis of spatio-temporal regularities in extended chaotic
systems with several degrees of freedom remains a much less
understood topic.

A very popular way of investigating complicated spatio-
temporal behaviors is by assuming their complexity to be due
to cooperative effects between a number of smaller subsystems
evolving under simple rules and operating on relatively few lo-
cal degrees of freedom. This “reductionistic approach”, which
in essence asserts that complex things may be reduced or ex-
plained by simpler “more fundamental” parts, is a point of view
that may be traced back to the ancient pre-Socratic Greek atom-
istic view of nature or, much more recently, to Descartes, who
argued that, e.g., animals could be reductively explained as au-
tomata [4]. Descartes envisioned the world like a huge machine,
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composed of a myriad of pieces resembling clockwork mecha-
nisms, whose collective macroscopic behavior could be under-
stood by studying the individual components of its constituent
mechanisms. This time-honored reductionistic approach has
been recently hailed as a new kind of science [5]. Incidentally,
it seems appropriate to mention that, in certain circumstances,
the laws that describe the behavior of complex systems might be
qualitatively rather different from those that govern its units [6].

Computationally, a highly efficient way of implementing
the reductionistic approach is by resorting to cellular automata
(CA), discrete dynamical systems capable of sustaining com-
plex behaviors [7,8]. Over the last few years CA have received
a great deal of attention, as may be easily corroborated by
perusing the interesting papers and ingenious applications dis-
cussed in the almost 2000 pages of, e.g., two very recent con-
ference proceedings [9,10]. Cellular automata are extensively
studied and applied in physics, chemistry, biology, traffic en-
gineering, computer science and other disciplines [7–16]. As
mentioned, despite this activity, several fundamental questions
still remain open, for instance, that concerning the precise el-
ementary mechanisms responsible for the genesis and nature
of the purported high-complexity of CA, a key element for ap-
plications such as compression and efficient storage of sound,
pictures, and even whole motion pictures [17,18].
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Fig. 1. Typical complex spatio-temporal patterns generated by rule 20. After
a first transient (short-lived), the surviving non-quiescent activity is that of a
few localized gliders: three stationary and time-periodic gliders located roughly
at the center of the figure, and a traveling glider on the right. The collision
between traveling and static gliders defines a second transient (long-lived) of
the system, when the dynamics under rule 20 invariably collapses into tame
class 2 behavior [24].

Some time ago, Wolfram [19,20] conjectured the possibil-
ity of collecting all spatio-temporal behaviors observed in CA
into just four classes, numbered from 1 to 4. As the number of
the class increases, so does the complexity of the phenomena
supported by the CA contained in the class. Loosely speaking,
the first three classes contain the familiar behaviors of more
traditional dynamical systems, namely fixed-point, periodic or-
bits and chaotic behaviors. Class 4, containing all behaviors that
do not properly fit into the three earlier classes, is very special
and conjectured to contain automata capable of universal com-
putations [5]. Fig. 1 illustrates class 4 behavior under rule 20,
an automaton displaying the same kind of short-lived complex-
ity seen in rule 52, the automaton that we focus in this work.
While much has been discussed concerning existence and util-
ity of class 4 automata [7,8,19–29], it is surprising that so little
seems to be known about their dynamical properties.

The aim of this paper is to characterize the dynamical be-
havior of rule 52, perhaps the least investigated rule among the
simplest candidates capable of reputedly highly complex class 4
behavior. Surprisingly, we find all computable gliders of rule 52
to present in fact relatively tame time-evolutions, consisting of
simple alternations of active and inactive synchronized patches
linked together by a very small set of communication inter-
faces, or motifs, where periodic activity occurs. We classify
such interfaces and show how to combine them to produce glid-
ers. Detailed statistical information about rule 52 and similar
rules is presented elsewhere [30]. Before starting, we mention
that while most authors find rule 52 to produce complicated be-
havior [19–22], it is possible to find recent work that, without
entering in details, contradicts this point of view [28].

In analogy with the structures familiar from the Game of
Life [7], the key elements used by Wolfram to argue for the ex-
istence of high-complexity class 4 behaviors were the so-called
“gliders”, illustrated in Fig. 1 for rule 20. Rule 20 means syn-
chronous updating of the local state variable σi(t) ∈ {0,1} at
site i and time t , according to the prescription

(1)σi(t + 1) =
{

1, if Σ = 2 or 4,

0, otherwise

where
Fig. 2. Typical complex spatio-temporal patterns generated by rule 52. Top: As-
ymptotically, the system settles into arbitrarily large patches of synchronized
activity, 0 (white) or 1 (purple, rendered in black when printed), interconnected
by transition interfaces were cyclic activity occurs. Gliders may subsist inside
individual patches but remain ephemeral as in rule 20. Bottom: Transition in-
terfaces are static or may travel. Periodic boundary conditions eventually lead
to collisions of interfaces and larger regions of synchronized activity. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

Σ ≡ σi−2(t) + σi−1(t) + σi(t) + σi+1(t) + σi+2(t).

As clear from the above definitions, the updating of the automa-
ton is controlled by an integer Σ ∈ {0,1,2,3,4,5} which is
a sort of equally-weighted sampling of the local variables of
5 neighbors: the site i itself and its near and next-near neigh-
bors. Gliders are believed to be the characteristic signatures
allowing one to recognize class 4 behavior. Among all total-
istic automata involving 5 neighbors, Wolfram [20] found only
two rules to be of class 4, namely rules 20 and 52.

For rule 52 the updating is done according to the expression

(2)σi(t + 1) =
{

1, if Σ = 2,4 or 5,

0, otherwise,

where Σ is the same sum in Eq. (1). Now the all-on configu-
ration maintains the on state, meaning that 4 or more adjacent
on sites are sufficient to block information flow through them.
In particular, such sites act like a rubber-band in the sense that
an arbitrary number of on sites may be added to them without
disturbing the dynamics.

Fig. 2 illustrates typical time-evolutions under rule 52 when
starting from a disordered state, i.e. from a random initial con-
dition. Here, initial states always contain an equal number of
0 and 1, and we use periodic boundary conditions, as usual.
For short time scales Fig. 2 displays complexity similar to that
of rule 20. The figure also shows that, again, the overwhelm-
ing tendency of such activity is to die in a relatively short time
scale, with only very defined gliders surviving.

Apart from regions where the evolution resembles that of
rule 20, a nice new feature of rule 52 is to contain additional
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domains where the evolution is conjugate to that of rule 20, i.e.
where gliders are composed now by 0s (not by 1s) and move
on backgrounds formed by 1s (not 0s). Such gliders look like
photographic “negatives” of those obtained under rule 20. By
experimenting with different initial conditions it is not difficult
to see that behaviors that do not die after short-lived transients
come in just two flavors, both present in Fig. 2. First, there
are large regions of synchronized sites formed by homogeneous
patches of either 0 or 1, represented by the two colors seen in
the figure. They correspond to the binary freedom of the au-
tomata. Second, rich activity occurs in the interfaces bridging
patches of different colors.

Fig. 3 summarizes the elementary interfaces bridging patches
of different and of similar colors, respectively. In addition to

Fig. 3. The seven elementary interfaces needed to produce all asymptotic com-
plexity computed for rule 52. Interfaces A to E bridge patches with backgrounds
of different colors while F and G bridge backgrounds of the same color. In both
cases, interfaces may be static or moving. The traveling glider T1 is not elemen-
tary but a juxtaposition of B and B , the conjugate of B . It travels at the “speed
of light” in the system: one cell per time-step. Glider G travels at 1/9 cell per
step. Time evolves always downwards, here and subsequently. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this Letter.)
these elementary interfaces, rule 52 also supports the evolution
of their corresponding conjugate interfaces, obtained by swap-
ping simultaneously 0 → 1 and 1 → 0 in all sites of the initial
conditions. For instance, the initial state ξ of the automaton A

in Fig. 3 and its conjugate ξ are given by

(3)ξ ≡ . . .1 1 1 1 0 1 0 0 0 0 0 . . . ,

(4)ξ = C(ξ) ≡ . . .0 0 0 0 1 0 1 1 1 1 1 . . . ,

where C denotes a conjugation operator which inverts the bi-
nary value of each cell of the automaton, and the ellipsis in-
dicate infinite repetition of the periodic pattern preceding or
following it. The elementary interfaces in Fig. 3 (and their con-
jugates) are the basic atoms which, when suitably combined,
reproduce the asymptotic activity and communication bound-
aries illustrated in Fig. 2.

How do synchronization patches arise? Large patches of
synchronized behavior arise from collisions between gliders
and, as illustrated by Fig. 4, gliders arise from the different
possibilities of combining elementary interfaces. For exam-
ple, the leftmost structure seen in the top row in Fig. 4 may
be considered either as an isolated glider propagating in the
white background or, equivalently, as a double transition be-
tween backgrounds, from white → black → white, constructed
with the elementary interface A and its conjugate A, shown in
Fig. 3. The inner core of glider 1, consisting of four adjacent
dark cells, is the minimum one possible. Its size may be in-
definitely “inflated”, as hinted by the glider labeled 1′ in the
figure. Similarly, glider 2 in Fig. 4 results from an analogous
double transition of backgrounds, but this time constructed with
the elementary interface C and its conjugate, shown in Fig. 3.
Its inner core may be also inflated arbitrarily, as indicated by
the glider 2′. A more complex glider is that labeled 4: it is
not difficult to realize that it may be composed by first inflat-
ing glider 1 and then embedding the conjugate F of F into
it. In this way we were able to produce all asymptotic struc-
tures computed for rule 52. Since “the conjugate of a fat glider
is also a legal fat glider”, moving in a conjugate background,
one sees that the few structures shown in Fig. 4 allow one to
easily recognize new gliders by the simple expedient of consid-
Fig. 4. Gliders arising when interfaces are glued together. Top: the simplest motifs surviving on a white background representing zeros. Middle: conjugates of the
gliders in the top row, white structures surviving on a black background of ones. Bottom: “fat” gliders, i.e. the same gliders seen on the top row but now with
“inflated” inner cores of ones. Note the different possibilities of combining interfaces.
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Fig. 5. Top: Static hybrid gliders formed by juxtaposing distinct elementary interfaces. The four black sites separating interfaces may be inflated arbitrarily, as
indicated in Fig. 4. Center: static gliders formed by dephasings due to the different ways of juxtaposing identical period-3 interfaces. Note that S3 has “rotational
symmetry” with respect to its central axis while S′

3 and S′′
3 have “helicoidal symmetry”, i.e. involve a reflection plus a one time-step shift as hinted by the additional

coloring. The minimum distance between interfaces is larger for leftmost gliders, to prevent white cells from interacting. Bottom: Hybrid gliders due to the three
possible time-dephasings between different period-3 interfaces. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)
ering structures as moving on backgrounds different than those
originally intended. For instance, cutting both gliders 1 and 2
along their fat inner cores one obtains the conjugate of glider
S1, shown in Fig. 5, etc. More generally, by removing all label-
ings from Fig. 4 one produces optical illusions, with different
people recognizing different gliders, at first.

Fig. 5 illustrates typical static gliders obtained when juxta-
posing interfaces which may be similar or not. As the figure
shows, a number of closely related patterns arises when com-
bining interfaces having temporal periodicities larger then 1.
For instance, with the interfaces C and C we may generate three
distinct but closely related fingers, denoted S3, S′

3, S′′
3 in Fig. 5.

While S3 has “rotational symmetry” with respect to its central
axis, its partners S′

3 and S′′
3 have a more elaborate “helicoidal

symmetry” involving a spatial reflection plus a one time-step
shift as may be recognized comparing their periods painted with
the darker coloring. Further, note that the minimum distance be-
tween the pair of interfaces forming S3 and S4 is larger than that
of their partners in order to prevent cells from interacting.

How complex is rule 52? Since all computable asymptotic
dynamics of rule 52 was found to be producible by juxtapos-
ing no more than seven elementary interfaces, it seems hard
to argue its intrinsic complexity to be very high, according to
any of the usual measures of complexity, particularly that or-
ganized around the symbolic dynamics of stationary symbol
sequences [1]. We do not see how rule 52 could support uni-
versal computation. In fact, our results seem to support doubts
about the very existence of complex cellular automata [31].
While of course a small number of interfaces might prove insuf-
ficient to generate all possible gliders when one lets the system
size to grow without bound (thermodynamic limit), a system-
atic multispin-coding search conducted for very large lattice
sizes [30] has not revealed new interfaces. In fact, the interface
labeled E in Fig. 3, the largest interface found, was obtained
not while probing the thermodynamic limit with random initial
conditions but by symmetry considerations, indicating that the
symmetries underlying interfaces may be fruitfully exploited
to generate them. Further, for small lattice sizes it is possible
to find even greater regularity, like the space-filing tilings ob-
served for rule 20 very recently [29].

It seems worth emphasizing that although the asymptotic
behavior in the thermodynamic limit discussed here is a deep
and enticing question from a conceptual point of view, there
are many applications of great practical importance which may
surely profit from the short-lived complexity exhibited by rule
52 during the first few generations and for lattices of moder-
ately small sizes, particularly for problems in socio-physics,
biophysics, or in problems involving excitable media [32], spe-
cially when allowing for more local degrees of freedom. Inter-
esting open questions for systems operating under rules simi-
lar [30] to rule 52 are (i) how to harness short-time complexity
to locate expeditiously the future positioning of interfaces and
gliders along the lattice, and (ii) what sort of strongly selective
mechanism is responsible for so effectively reducing periods
and motifs which survive. For, it is remarkable that such huge
phase-spaces support only a very limited gamut of complex-
ity.

In conclusion, we briefly mention that the interfaces reported
here may be efficiently studied with a spatial updating algo-
rithm [33], a tool that allows one to prove that the static in-
terfaces found empirically here are the only interfaces possible
with spatial periods up to 10, independently of the size of the
automata. The spatial updating algorithm provides an alterna-
tive way to determine the dynamics of automata of arbitrary
size, a way of taking into account the complexity of the connec-
tions in the lattice [33].
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